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Oak Ridge National Laboratory

« Staff ~ 6000
« Home to the first exascale
supercomputer

Computing and Computational

Sciences Directorate (CCSD)

* National Center for
Computational Sciences
(NCCS)

« Computer Science and
Mathematics Division (CSMD)

« Computational Science and
Engineering (CSED)

https://www.ornl.gov/directorate/ccsd

% OAK RIDGE

tioml Laboratory




Supercomputers at ORNL

ORNL has systematically delivered a series

of leadership-class systems
On scope * On budget ¢ Within schedule
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How Often Do We See Error Bars in 2D/3D Visualizationse
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Why Should We Visualize Uncertaintye

-

Measurement and C )
quantization errors Algorithmic and
+ numerical
Data reduction Interpolation approximation
uncertainties ) errors errors
Data Data
Acquisition Enrichment

¥, OAK RIDGE

- Mational Laboratory

View
transformation
errors

\

—» Mapping [— Rendering

The Visualization Pipeline

Final
Displayable
Image




Why Should We Visualize Uncertaintye
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Uncertainty Visualization for Trustworthy Analysis

Control polygon

Original features Missing features Possible features
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(a) High-resolution features (b) Visualization without uncertainty (c) Visualization with uncertainty
(Mean) (Histogram with 4 bins)

[Athawale et al., Fiber Uncertainty Visualization of Bivariate Data for Parametric and
Nonparametric Noise Models, IEEE VIS 2022]
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Uncertainty Visualization for Trustworthy Analysis

Without uncertainty visualization With uncertainty visualization
b1 e, ] issi '+, .«— Possible
| ' «#+—Halo . I { < Missing | u_._” -

he ‘ e : ’ halo b N alo
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(a) Original (b) Compressed data
(Nyx cosmology dataset)

[Athawale et al., Uncertainty Visualization of Marching Squares and Marching Cubes

Topology Cases, IEEE VIS 2021]
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Uncertainty Visualization: Top Research Challenge

[A. T. Pang, C. M. Wittenbrink, and S. K. Lodha, “Approaches to Uncertainty Visualization”, 1997]
[C. R. Johnson and A. R. Sanderson, “A Next Step: Visualizing Errors and Uncertainty”, 2004]

Challenge: Lack of theory in uncertainty visualization because of the complexities related to
uncertainty propagation, cost overhead, rendering, perception, cognition, decision-making

4 ) -
Measurement and Algorithmi
quantization errors gorithmic and
+ numerical View
Data reduction Interpolation approximation | | transformation
uncertainties J errors L errors errors
' “ 4¥ Jg Final
Data Data : , :
Acquisition —> Enrichment "1 Mapping [— Rendering —> Displayable
Image

The Visualization Pipeline

[K. Brodlie, R. A. Osorio, and A. Lopes, “A Review of Uncertainty in Data Visualization”, 2012]
[A. Kamal et al., “Recent Advances and Challenges in Uncertainty Visualization”, 2021]
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Our Approach to Uncertainty Visualization

Monte Carlo (easy but expensive) VS. Analytical (difficult but fast)

Unknown:
pdfv(y)

TA—» Y (Feature)

(State of the art) (Our approach)
(Measurement and ) C )
quantization errors Algorithmic and
" numerical View
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Uncertainty-Aware Direct Volume Rendering
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Uncertainty-Aware Direct Volume Rendering
(Analyfical Approach)

The teardrop function [Knoll et al., 2009]
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Uncertainty-Aware Direct Volume Rendering

v

"

(a) Ground truth (b) Mean

(512x512x1559) (64x64x195)
‘ 7 4 BN
(@) Ground (b) Mean (c) Parametric  (d) Nonparametric _ 4 pist
truth [Sakhaee and Entezari, (Our contribution) b = # histogram
2017] [Athawale et al., 2020] _ _ bins
(c) Parametric (d) Nonparametric
The teardrop function o o (our contibuton)
zari,
(ensemble dataset) 2017] [Athawale et al., 2020]
Visualization software: Voreen Osirix OBELIX dataset (http://medvis.org/datasets/)

( )

?‘,OAK RIDGE

- Mational Laboratory




The Red Sea Eddy Simulations
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Uncertainty-Aware Volume Rendering: Interactive
Exploration

Uniform Noise Assumption

Mean-field: Uniform:
Mean per-vertex Mean and width of a
distribution per vertex

*{}m{ RIDGE

mmmmm Laboratory




Quartile View: Uncertainty Visualization

Rendering uncertainty for 3D or high-dimensional data sets is an open research challenge.

(@) Lower quartile - (b) Central 50%, IQR (c) Upper quartile -
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Uncertainty in Surface-Based Visualization of Univariate
Dato

Original data Decompressed data without Decompressed data with
uncertainty visualization uncertainty visualized in red

[Wang et al., Supercomputing 2024]
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Uncertainty Visualization of Multivariate Data
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Visualization of Trivariate Uncertain Data

Velocity magnitude:(0.1, 0.5), temperature:(0.2, 0.25), and pressure:(30000, 400000)
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Original data Visualization without uncertainty Visualization with uncertainty
(490x280x240) (245x140x120) (245x140x120x2)

¥ OAK RIDGE [Hari et al., 2024 IEEE Workshop on Uncertainty Visualization]




Uncertainty Visualization: Oceanology

Vorticity

Eddies play a major role in transporting energy and biogeochemical particles in oceans [zhan et al.,
“Eddies in Red Sea: A statistical and dynamical study”, 2014]

Fiber
0 Probability 1

Fiber
o Probability 1

Low Density High

0™ 8 4 0 4 8 12 Small number of Relatively large ] l\:‘IOd?tr'atelf t
) Z component of curl vortical features number of vortical features number of vortical features
(c) Parametric (d) Nonparametric

(@) Continuous scatterplot (b) Mean-field fiber surface

[T. M. Athawale, C. R. Johnson, S. Sane, and D. Pugmire, “Fiber Uncertainty Visualization for
Bivariate Data With Parametric And Nonparametric Noise Models”, IEEE VIS 2022]
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Uncertainty Visualization of Feature Level-Sets

&

vorticity

Aeamvoft ‘
..{. ,,,,,,,,,,,,,,,,,,,,,,

 prespert -

Feature level-sets Feature confidence
[Jankowai, 2018] level-sets

[Sane, Athawale, and
Johnson, 2021]

Visualization software: Vislt [Childs et al., 2012]
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Uncertainty Visualization of Topological Features
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Morse Complex Visualizations

Topological descriptors of gradient flows
of a scalar field

Critical point
(local maximum)

Understanding structure of SegmeFI\’lcing m0|eCIU|230IZ)GS]UI’faces
. . atarajan et al.,
turbulent mixing layers [Laney et al. 2006] [Shivashankar et al., 2012]
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Effect of Noise on Morse Complexes

Ground truth Mqrse complex

O
w N

Morse complex extraction
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[Ackley, 1987] Ensemble member 1 Ensemble member 2 Ensemble member 3

>
Mix noise and
extract Morse complex
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Morse Complex Uncertainty

L
-1
|

Agreement Regions Uncertainty Regions

1
1A

0 10 20 30 40

Ensemble of
Morse Complexes

Expected boundaries

[T. M. Athawale, D. Maljovec, L. Yan, C. R. Johnson, V. Pascucci, and B. Wang, TVCG, 2022]
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Uncertainty Visualization of Critical Points

Ensemble member 1 Ensemble member n Uncertainty visualization
(Vortex cores in yellow) (Vortex cores in yellow) (Vortex core position probabilities)

% OAK RIDGE [Athawale et al., IEEE TVCG, 2025]
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Uncertainty Visualization of Domain-Specific
Data
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Deep Brain Stimulation (DBS)

Medtronic DBS electrode Mo. 3387

1.5 mm 1.5 mm

1.27 mm I‘—T I(—>|
C ||
Voltage: 1-5V

Frequency: 120-185 Hz
Pulse width: 60-200 us
Contacts: Cathode(-)/Anode(+)/.Off

) Neurostimulator

Knowledge of precise electrode positions in the patient brain is essential
in order to set optimal patient-specific stimulation pattern.
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Patient Head Image with Implanted Electrodes

DBS lead Post-surgery MRI to capture

schematic electrode positions
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Uncertainty Visualization of Implanted Electrodes

Isovalue=0.9

Standard
Deviation
=0.71 mm

¥
X

Positional Likelihood

[Athawale et al., 2019]

Isovalue=0.95

Standard

Deviation

=0.48 mm
The volume The confidence
visualization visualization
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Wind Flow Near Solar Panels

Temperature (K)

(a)

[Athawale, Staninslawski, Sane, and Johnson, 2021]

Visualization software: ParaView [Ahrens et al., 2005]
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Temperature Variation Analysis
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Electrocardiographic Imaging (ECGl)

Electrocardiogram Imaging Visualize uncertainty or inconsistency
(ECGI) ECG lead of ECGI inverse solutions
Level sets Topologl_cal
analysis

Inverse

Ensemble data representing the PrObablha Confidence Potential (mV)

uncertainty in potentials on - - -

[Njeru, Athawale, France, Johnson, 2022]
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Addressing Cost Overhead of Visualizing
Uncertainty




Addressing Cost Overhead of Visualizing Uncertainty

Data size = 680 MB

0 LCP 1 0 LCP 1 0 Difference 1

EUROVIS 2024/ C. Tominski, M. Waldner, and B. Wang Short Paper

Data-Driven Computation of Probabilistic Marching Cubes for BMSE=00028 Macemorsn.08

Efficient Visualization of Level-Set Uncertainty (a) Without (b) PMC (C) PMC (Eigenvalue-based)
uncertainty (Reference) 1.63X faster than the reference

27.18 seconds 16.72 seconds

Tushar M. Athawale' 2@, Zhe Wang' @, Chris R. Johnson?, and David Pugmire' ©

!Oak Ridge National Laboratory, USA
2Scientific C ing and Imaging Institute, University of Utah, USA

P

Abstract
Uncertainty visualization is an important emerging research area. Being able to visualize data uncertainty can help scientists

ments of the probabilistic marching cubes (PMC) algorithm. PMC is an uncertainty visualization technique that studies how
sampling in the original PMC algorithm and hence speed up the comp i Qur proposed methods produce results that show

uncertainty in data affects level-set positions. However, the algorithm relies on expensive Monte Carlo (MC) sampling for the ﬂ
negligible differences compared with the original PMC algorithm demonstrated through metrics, including root mean squared i _sit{” -

improve trust in analysis and decision-making. However, visualizing uncertainty can add computational overhead, which can 0 elg_l nax
hinder the efficiency of analysis. In this paper, we propose novel data-driven techniques to reduce the computational require- _:
multivariate Gaussian uncertainty model because no closed-form solution exists for the integration of multivariate Gaussian. In

this work, we propose the eig lue decomposition and adaptive probability model techniques that reduce the amount of MC

error, maximum error, and difference images. We demonstrate the performance and accuracy evaluations of our data-driven T

methods through experiments on synthetic and real datasets. .
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Addressing Cost Overhead of Visualizing Uncertainty

Create scalable algorithms The GPU CUDA (NVIDIA V100 graphics card)

and C++ openMP (Power9 CPU) implementations

| -
o 121 \ #threads=1
) __ 301
> T
= 11 5
g g 20
2 ﬁ #threads=4
= 10- )
o
. £ 10
o k = #threads=16
29 . 0. - GPU
B 5 10 15 20 20 40 60 80 100
# Histogram bins # Histogram bins
(a) (b)

Accuracy (a) Vs. Timing (b) Curves

The computing resources are courtesy of the Summit Supercomputer at the Oak Ridge National Laboratory.

[Athawale et al., Fiber Uncertainty Visualization of Bivariate Data for Parametric and

% OAK RIDGE Nonparametric Noise Models, IEEE VIS 2022]
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Future work: Machine Learning for Uncertainty Visualization

Learn uncertainties pertinent to isosurfaces from a bunch of time steps and predict uncertainty for future time steps

—8— Marching Cube Serial Computation
= —8—Marching Cube Parallel Computation
A120
1 2100
> £
= )
b—] 2
§ 0.8 Z o
g .
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2 0.6 2
2 0
% 1000 2000 3000 4000 5000 6000 7000 8000
wn O . 4 Number of Monte-Carlo Samples
@)
¢ 8| —0— Marching Cube Parallel Computation
B 0 2 Deep Learning Inference with GPU
5 ’ —8— Deep Learning Inference with CPU
~ 0 i
Es
=
2
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=]
]
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Monte Carlo Machine :
Predicted 1
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( ] 7 OX fOST er) Number of Monte-Carlo Samples

JOAK RIDGE [M. Han, T. M. Athawale, D. Pugmire, and C. R. Johnson, IEEE VIS 2022 short papers]




Open Research Challenges

* Theoretical research in uncertainty visualization for 2D/3D/high-
dimensional data

« Devising uncertainty-aware decision frameworks to perform optimal
algorithmic decisions, reduce uncertainty, and enhance quality of
visualizations

« Handling cost overhead of visualizing uncertainty
 Effective rendering of uncertainty

« Assessing perception, cognition, and decision-making quality under
uncertainty
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Opportunities at ORNL

Faculty and Undergraduate Students

Impacting students at a pivotal point in their education, WDTS undergraduate student programs strive to transform
STEM learning into STEM careers. Working alongside researchers at the DOE national labs, student interns are not
only able to imagine themselves as scientists — they become scientists. Visiting faculty expand their research
horizons and invigorate their STEM teaching through new collaborations.

e Science Undergraduate Laboratory Internships (SULI)
e Community College Internships (CClI)
e Visiting Faculty Program (VFP)

Graduate Students

Graduate students can further advance their doctoral thesis research by accessing cutting-edge instrumentation and
expertise at DOE national laboratories. Students become scientists in residence, collaborating with national lab
scientists and engineers to answer their most challenging research questions and establishing a one-of-a-kind
network for their future careers.

¢ Office of Science Graduate Student Research (SCGSR)
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Frontier (currently, 2n¢ fastest supercomputer)

« The first supercomputer to
break exascale barrier!

* Frontier uses 9,472 AMD Epyc
/713 "Trento” 64 core 2 GHz
CPUs (606,208 cores) and
37,888 Instinct MI250X GPUs
(8,335,360 cores).

« Consumes around
21 megawatts (MW) (which is
equivalent to the power
needed for 15,000 single-
family homes),
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https://en.wikipedia.org/wiki/Epyc
https://en.wikipedia.org/wiki/Epyc
https://en.wikipedia.org/wiki/AMD_Instinct

Thank youl!

This research used resources of the Oak Ridge Leadership Computing Facility at the

Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC05-000R22725.

For any guestions, please contact me at:
Email: tushar.athawale@gmail.com

Personal website: http://tusharathawale.info

%EAK RIDGE

tonal Laboratory




	Slide 1: Uncertainty Visualization of 2D/3D Scientific Data for Trusted Analysis and Decision-Making 
	Slide 2: My Educational and Job Journey
	Slide 3: Oak Ridge National Laboratory
	Slide 4: Supercomputers at ORNL
	Slide 5: How Often Do We See Error Bars in 2D/3D Visualizations?
	Slide 6: Why Should We Visualize Uncertainty?
	Slide 7: Why Should We Visualize Uncertainty?
	Slide 8: Uncertainty Visualization for Trustworthy Analysis
	Slide 9: Uncertainty Visualization for Trustworthy Analysis
	Slide 10: Uncertainty Visualization: Top Research Challenge
	Slide 11: Our Approach to Uncertainty Visualization
	Slide 12
	Slide 13: Uncertainty-Aware Direct Volume Rendering  (Analytical Approach) 
	Slide 14: Uncertainty-Aware Direct Volume Rendering 
	Slide 15: The Red Sea Eddy Simulations
	Slide 16: Uncertainty-Aware Volume Rendering: Interactive Exploration
	Slide 17: Quartile View: Uncertainty Visualization
	Slide 18: Uncertainty in Surface-Based Visualization of Univariate Data
	Slide 19
	Slide 20: Visualization of Trivariate Uncertain Data 
	Slide 21: Uncertainty Visualization: Oceanology
	Slide 22: Uncertainty Visualization of Feature Level-Sets
	Slide 23
	Slide 24: Morse Complex Visualizations
	Slide 25: Effect of Noise on Morse Complexes
	Slide 26: Morse Complex Uncertainty
	Slide 27: Uncertainty Visualization of Critical Points
	Slide 28
	Slide 29: Deep Brain Stimulation (DBS)
	Slide 30: Patient Head Image with Implanted Electrodes
	Slide 31: Uncertainty Visualization of Implanted Electrodes
	Slide 32: Wind Flow Near Solar Panels
	Slide 33: Temperature Variation Analysis
	Slide 34: Electrocardiographic Imaging (ECGI)
	Slide 35
	Slide 36: Addressing Cost Overhead of Visualizing Uncertainty
	Slide 37: Addressing Cost Overhead of Visualizing Uncertainty
	Slide 38: Future work: Machine Learning for Uncertainty Visualization
	Slide 39: Open Research Challenges
	Slide 40: Opportunities at ORNL
	Slide 41: Frontier (currently, 2nd fastest supercomputer)
	Slide 42: Thank you!

