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Abstract
The VTK-m software library enables scientific visualization on exascale-class supercomputers. Exascale machines
are particularly challenging for software development in part because they use GPU accelerators to provide the vast
majority of their computational throughput. Algorithmic designs for GPUs and GPU-centric computing often deviate
from those that worked well on previous generations of high-performance computers that relied on traditional CPUs.
Fortunately, VTK-m provides scientific visualization algorithms for GPUs and other accelerators. VTK-m also provides
a framework that simplifies the implementation of new algorithms and adds a porting layer to work across multiple
processor types. This paper describes the main challenges encountered when making scientific visualization available
at exascale. We document the surprises and obstacles faced when moving from pre-exascale platforms to the final
exascale designs and the performance on those systems including scaling studies on Frontier, an exascale machine
with over 37,000 AMD GPUs. We also report on the integration of VTK-m with other exascale software technologies.
Finally, we show how VTK-m helps scientific discovery for applications such as fusion and particle acceleration that
leverage an exascale supercomputer.
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1 Introduction

As its name would imply, the goal of the Exascale
Computing Project (ECP) was to build and make practical
the world’s first exascale supercomputers. Although this
goal was nominally to stand up computers capable of a
billion-billion (1018) floating point operations per second,
this advancement required a revolution in both hardware
and software. Critical to this advancement was the adoption
of GPUs (from a variety of vendors) to be used as
the primary computing engine. These GPUs provided
unmatched computational throughput relative to the power
they consume, albeit at the cost of greater code complexity.

Scientific simulations running on exascale supercomput-
ers can produce datasets of unprecedented scale, and visu-
alization and analysis approaches are frequently used to
understand the resulting data and promote discovery. That
said, the scale of the data produced by simulations on
exascale computers requires the visualization and analysis
approaches themselves to utilize significant computational
resources. Most commonly, this computation is conducted
on the same supercomputer and hardware that produced the
data in the first place.

The VTK-m software library makes it possible to
process these enormous datasets from exascale computers
by implementing classic scientific visualization algorithms
that have been redesigned for heavily threaded environments
such as supercomputers with GPUs. VTK-m also provides
a framework that simplifies the implementation of new

algorithms and adds a porting layer to work across multiple
processor types. This porting layer allows algorithms written
in VTK-m to be written once and run everywhere, which
alone saves a substantial amount of developer effort. At
the inception of the ECP, VTK-m was the byproduct of
a research project. The ECP provided the investment to
advance VTK-m to production software. This software now
serves as the underlying visualization implementation across
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Table 1. Visualization algorithms accelerated by VTK-m.

Goals of visualization Algorithms accelerated by VTK-m

Scalar field visualization Contour (Lo et al. 2012), Threshold (Maynard et al. 2013)
Vector/Flow field visualization Particle advection (Pugmire et al. 2018), Finite-time Lyapunov exponent (FTLE) (Sane

et al. 2021b), Poincaré plot (Suchyta et al. 2022a)
Geometry Refinement External faces (Lessley et al. 2016, 2017), Surface simplification (Moreland et al. 2016),

Point merging (Yenpure et al. 2019)
Rendering Volume rendering (Larsen et al. 2015a), Surface rendering (Larsen et al. 2015b)
Reduction and compression Wavelet compression (Li et al. 2017), Statistical models (Wang et al. 2019), Lagrangian

Representations (Sane et al. 2021a,b)
Topological analysis Contour trees (Carr et al. 2021)
Uncertainty visualization Uncertainty isosurface (Wang et al. 2023)
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Figure 1. Workflow of an algorithm implemented in VTK-m. The “control environment,” which runs on a single thread on the host,
manages data organization and orchestrates operations. The “execution environment,” which runs on many threads on the device,
performs parallel execution across elements of data. A “device adapter” manages data movement and control flow between these
two environments.

the entire ECP. VTK-m is currently used by ParaView, VisIt,
and Ascent for the portion of their visualization algorithms
that execute on the accelerator processors of exascale
platforms and on other GPU-centric supercomputers.

This paper describes the challenges encountered when
making visualization available at exascale. It begins with a
brief overview of the VTK-m framework. It then describes
the most significant porting challenges encountered during
the ECP given the hardware for the production exascale
machines differed dramatically from the pre-exascale
machines. This is followed by a summary of the performance
of VTK-m on the exascale hardware including scaling
studies on an exascale computer of over 37,000 AMD
GPUs. Finally, the paper concludes with a discussion on
the software engineering required to integrate VTK-m into
usable visualization tools and successes with using VTK-m
to solve problems in real science applications. This includes
porting challenges, performance testing and improvement,
integration with other ECP software technologies, and the
support of ECP applications.

2 Overview of VTK-m

The VTK-m library (Moreland et al. 2016) began as
a research project funded by the Advanced Scientific
Computing Research program within the US Department
of Energy’s (DOE’s) Office of Science. The project’s
goal was to enable scientific visualization on emerging
high-performance computing (HPC) systems via two
approaches: (1) by serving as a repository for interoperable

scientific visualization algorithms well suited to accelerator
architectures and (2) by providing a framework that
simplifies the development of visualization algorithms that
can be ported across many accelerator devices.

At the onset of the ECP, VTK-m contained only the most
common operations for scientific visualization: contour,
threshold, external faces, basic surface simplification,
and rendering. Although this initial set of operations is
useful, users almost always require more functionality.
The ECP enabled this additional functionality to grow
with the introduction of new algorithms and performance
improvements to the existing ones. Table 1 contains a
selection of algorithms currently provided by VTK-m. These
added features provided the necessary functionality for the
tools and applications that utilized VTK-m to execute on
exascale machines and similar hardware.

The basic workflow for an algorithm in VTK-m’s
framework is shown in Figure 1. The framework separates
code into two environments: control and execution. In a GPU
development environment, control corresponds to the “host,”
and execution corresponds to the “device.” This separation is
maintained even when there is not a clear separation between
host and device, which is the case for some accelerators such
as the Xeon Phi (Jeffers et al. 2016).

Algorithms in VTK-m execute parallel routines by
wrapping them in a functional object that will be passed to
the device in the execution environment. There, it will be
run on many threads, and each instance will be fed a small,
isolated portion of the data. This functional object is called
a “worklet” because it works on a small portion of data.
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The worklet API in the execution environment is designed
to promote thread safety to simplify the implementation and
to prevent memory access hazards. It is also well suited
for modern devices that require many (thousands or more)
parallel threads to run efficiently, which are the type of
devices VTK-m is designed for.

To achieve portability, VTK-m contains a device adapter
that manages interaction with a variety of devices. The
entirety of VTK-m can be ported with a change to the device
adapter. Furthermore, all execution code (“device code”) is
implemented with standard C++14 and can thus be compiled
for any device supporting this very common programming
environment.

VTK-m uses multiple techniques to achieve efficient
parallelization. One technique is to enable data to be divided
into small pieces for parallel execution by using a flexible
data model (Meredith et al. 2012). A second technique is to
utilize data parallel primitive methods (Blelloch 1990). Data
parallel primitives allow algorithms to be implemented as a
sequence of data parallel operations such as map, scan, sort,
and reduce. Early work explored how to implement scientific
visualization using data parellel primitives (Lo et al. 2012).
Map applies an operation to each datum and is a convenient
way to specify parallel operations. Scan, which produces
a running sum, product, or other associative operation, is
useful for building indicies after counting. Sort reorders data
to make duplicates easy to find. Reduce provides a total sum
or product for quick accumulations.

To simplify the implementation further, VTK-m provides
meta data-parallel primitives (Moreland et al. 2021) that
incorporate common patterns for scientific data that were
demonstrated to be efficient. For example, VTK-m provides
a meta data-parallel primitive to map an operation to every
cell of a mesh while internally handling all the indexing
of shape and incident point information. Finally, note
that the VTK-m design achieves developer efficiency with
streamlined algorithm development and automatic porting to
new architectures with an efficient implementation.

3 Porting challenges

Although the pre-exascale machines provided good experi-
ence to the VTK-m development team for porting to different
processor architectures, the design of the Frontier and Aurora
exascale machines introduced new technical challenges. This
section reports the most significant modifications required to
make it feasible to run VTK-m on exascale hardware.

3.1 Adopting Kokkos
As described in Section 2, one of the main features that
VTK-m supports is “write once, compile anywhere” for its
algorithms. A device portability layer called a device adapter
allows algorithms written with standard C++ features to run
across all devices. These device adapters wrap a parallel
device into a common API that provides functionalities
for parallel-task scheduling, memory management, atomic
operations, and several commonly used parallel algorithms
such as scan, sort, and reduce through a common interface.
These are implemented on top of the native libraries used to
program these devices.

When the architectures for Aurora and Frontier were
announced, it was revealed that they would be using
two completely new GPU architectures from two different
vendors (i.e., Intel GPUs in Aurora and AMD GPUs in
Frontier) with their own native libraries (SYCL for Intel
and HIP for AMD). Porting VTK-m directly to these
new archictectures would have required two new device
adapter back ends. Although the device adapter layer greatly
simplifies the porting of VTK-m code, implementing device
adapters themselves is not trivial. So, although it would be
technically feasible to design device adapters for two new
devices, it would have required significant effort.

To overcome this hurdle, we looked to another ECP
project called Kokkos (Edwards et al. 2014; Trott et al.
2022). Kokkos is a library for implementing performance-
portable applications in C++. Similar to VTK-m, Kokkos
also supports multiple device back ends, including SYCL
and HIP, which are used by the exascale systems. So, with
just one device adapter built on top of Kokkos, we were
able to target both the machines. This allows us to write one
VTK-m device adapter to target the Kokkos API and defer
the work of interfacing with the different ECP device APIs
to the Kokkos team, who were already doing this for other
ECP projects.

Because the exascale machines were based on completely
new hardware, Kokkos was also in active development when
we were developing the VTK-m device adapter. Therefore,
we faced a few challenges during the development, and
some of the most interesting challenges we encountered are
described below.

As mentioned previously, VTK-m filters and algorithms
are implemented as a sequence of some primitive parallel
operations such as scan, sort, and reduce. To achieve good
performance, the implementation of these parallel primitives
must be as efficient as possible. VTK-m comes with
generic implementations for these operations, but generality
precludes sufficient optimization for target architectures.
Fortunately, device adapters specialize and optimize these
operations for their target hardware.

For the Kokkos device adapter, we relied on the
implementations provided by the Kokkos library. However,
we discovered that Kokkos did not have all of the
primitives that VTK-m supported, and, even when available,
some implementations were not as flexible as those
supported natively by VTK-m. For example, at the time of
development, the Kokkos sort only supported floating point
values with the less-than operator as the ordering comparator,
whereas VTK-m supported all primitive types and also
non-primitive types with custom comparison operators.
Therefore, we had to implement code paths to use the
Kokkos sort for only supported arguments and to fall back
to the generic VTK-m implementations for all other cases.

Another issue we encountered were bugs in the Kokkos
code base. During development, we hit several critical bugs
that would crash the program. Therefore, we also had to work
around these failing features with a fallback code path for
failing conditions until these issues could be addressed.

We also faced challenges getting the Kokkos library
initialization to work with VTK-m. Kokkos only gives
one option to specify configuration options at the library
initalization during program startup. In contrast, VTK-m’s
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initialization is optional and allows the configuration to
be selected more flexibly. This required us to rethink and
overhaul our own initialization procedure so that all of our
dependencies were initialized correctly and in the correct
order. Furthermore, using VTK-m with other libraries that
also use Kokkos is a valid use case, but only one of these
libraries should initialize and finalize the Kokkos library.
To prevent it from “stealing” the Kokkos initialization
from other code, VTK-m delays Kokkos initialization until
it is required and detects whether the Kokkos system is
already initialized. If VTK-m does initialize Kokkos, then it
establishes a callback at program termination to finalize the
Kokkos library.

3.2 Addition and then removal of virtual
methods

One of the challenges of a general purpose visualization
library like VTK-m is that it is intended to support data
coming from all manner of data producers. It cannot
make assumptions about data structures from the base
data types (float vs double vs int) to the arrangement
and interpolation of values in mesh structures. As such,
it requires sophisticated software engineering to enable
flexibility and adaptability that is practical both for
developers and users of VTK-m.

VTK-m uses C++ templates to customize algorithms for
different data types. Ideally, an algorithm will know the
data types on which it will operate. Unfortunately, this is
seldom the case for VTK-m because data ingested from
different sources can have any number of basic types and
memory layouts. In the early years of the ECP, this problem
was addressed by compiling algorithms in VTK-m for all
possible types that could be encountered. However, the
amount of potential cases generated is too many to be
practical.

C++ objects with virtual methods are a natural solution
to this problem, and when they became available on CUDA
devices, VTK-m started using virtual methods to hide the
structure of arrays. This originally addressed some of the
issues with type abstraction. However, this solution worked
poorly and was later abandoned for two reasons. First, using
virtual methods introduced problems with library linking
because the compilers had to collect any possible code
that might need to be loaded on the device. In addition to
the obvious problem of bloat from replicating object code
across all libraries, the process required a fragile and slow
build step, and it precluded the possibility of adding further
subclasses after the library was built. Second, when the ECP
announced that its exascale machines would be using GPUs
from Intel and AMD (i.e., not using NVIDIA’s CUDA), it
was unclear how well they would support virtual methods or
even if they would support them at all.

Consequently, the VTK-m development team pivoted, and
virtual methods were removed from the VTK-m code that
ran on devices. To manage the operations on types without
using virtual methods, VTK-m employed a trio of strategies:
multiplexing the type in the algorithm, generalizing the stride
in arrays, and providing fall backs when unexpected types
were encountered.

The first strategy, multiplexing, required using a type-
agnostic storage object. For this, a Variant class was
added to VTK-m. The Variant takes a list of types as
template parameters, and it can hold exactly one of these
objects at a time. At run time, the proper type can be queried
and extracted. Although multiplexing from a variant object
still requires separate compilation for all possible types, it
limits the code that must be recompiled to make it more
manageable.

The second strategy required a redesign of the array
management in VTK-m. Where the original design of array
management completely abstracted the implementation, the
new design based the array management on raw buffers of
memory that internally can be reinterpreted as C arrays to
implement different array types. This in turn provided a way
to generalize the representation of an array component by
defining a stride in the buffer. In this way, an algorithm no
longer had to be compiled for a specific data layout. It could
instead apply a stride to the array and use any layout.

The third strategy recognized that although many types are
possible, most are rarely encountered in practice. Therefore,
instead of attempting to compile a function for any possible
type, it is possible to instead compile for the most likely
types and then have a fallback for the cases when the type
is unexpected. The typical solution is to copy the array of an
unknown type to an array of a known type. This feature was
included in the filter interface overhaul, which is described
in the next section.

3.3 Filter interface overhaul
The majority of algorithms in VTK-m are contained in what
is called a “filter” object. A filter takes a dataset, performs
some operations to modify it, and returns the resulting
dataset. Filters provide the outwardly facing API to process
data in VTK-m. However, as previously described, these
datasets can have any number of data types and structures.
The VTK-m filter base class needs to provide a mechanism
to resolve data types. That is, the filter base class needs a way
to call a templated method in a derived implementation class
with fully resolved data types.

Because a C++ template method cannot also be a
virtual function, which is needed for typical run-time
polymorphism, the original design used a rather complicated
technique called the curiously recurring template pattern
(CRTP) (Coplien 1995) to emulate it. CRTP works by
making the type of derived class a template argument to the
base class. When the base class needs to call a method in
the derived class, rather than use a virtual method, it recasts
itself as the derived class and calls the method directly. This
allows the base class to iterate through a list of supported
data types and call a templated method in the derived class
to implement the algorithm on each one.

However, using CRTP also made the base filter class
itself a class template, and its execution methods required
exposed definitions that the compiler internally recompiled
each time they were called elsewhere in the code. This
made the VTK-m filter library essentially a header-only
library, and clients using it had to include all the necessary
implementation in the header files. When compiling client
code, all those header files had to be parsed, and classes and
methods had to be instantiated. As a consequence, it took a
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long time to compile applications of VTK-m. This issue was
most prominent when compiling for GPU devices because
most device compilers were not as efficient as host compilers
when handling C++ templates. When integrated as part of
an in-situ pipeline, simulation code that called VTK-m’s
filters also had to be compiled by a device compiler, thus
exacerbating the problem. In some extreme cases, the entire
compilation process took more than 24 hours to complete.

The new design changed the type-dispatching mechanism.
The responsibility of type dispatching was shifted from
the filter base class to the derived implementation classes.
The execution method in the derived class is no longer
a template; it accepts a dataset that contains ambiguous
types. This increases the burden on the algorithm developers
who must now resolve types themselves. To compensate,
VTK-m provides an alternate dispatching mechanism by
providing various forms of a “cast-and-call” mechanism on
the dataset’s elements. The derived filter performs the type
dispatching by passing a dataset element to a cast-and-call
along with a templated, callable object. This callable object is
generally the type-dependent, core business logic of the filter
implementation wrapped inside a C++14 generic lambda
expression. The lambda expression will be instantiated
with types from a predefined type list by the cast-and-call
mechanism.

The cast-and-call mechanism will attempt to resolve the
data to a prescribed list of types. When the data type is
not part of the type list, the cast-and-call mechanism can
fall back to a known type, as described in Section 3.2.
The predefined type list and fallback limit the number of
instantiations of the lambda expression. Using cast-and-call
with lambda expressions in this way also limits the portion
of code to be instantiated. In contrast, the original design
required the entire body of the filter implementation to be
instantiated, which can increase both compilation time and
code bloat.

Because the filter object methods are no longer template
methods, they can be virtual methods. Note that the filter
methods in question are explicitly run in VTK-m’s control
environment, and this means they will only be run on the
CPU host. Previously discussed issues with virtual methods
on GPUs do not apply here, so creating virtual methods is
not problematic in this case. Moreover, the virtual methods
eliminate the need to use the CRTP technique. Consequently,
the entire filter class hierarchy has become a non-template
class as well. The library is no longer a header-only library
and can be built as a traditional, precompiled library. The
filter library is further divided into several modules with each
separately compiled into a .so file. This allows subsequent
linking to potentially load less memory from libraries. It also
allows users to turn off the compiling of libraries they do not
need for faster compilation. Finally, applications no longer
need to be compiled by a device compiler simply because
they are using VTK-m.

The new filter structure, which removes exposed templates
and encapsulates code into libraries, greatly reduces
application build time because applications no longer have
to compile many VTK-m templates. Rather, applications
simply link to methods in the VTK-m library. The
new approach also provides other compile-time saving
opportunities within the library. For example, some filters

incorporate the functionality of others as a subroutine.
The new filter structure allows filters to be compiled once
and have their functionality leveraged by other filters. For
example, the compilation of VTK-m’s material interface
reconstruction filter was reduced by a factor of 9 by linking
to the mesh quality filter rather than recompiling it.

The new filter structure also enables dividing the code into
multiple translation units (i.e., separate C++ source files).
Although this does not necessarily reduce the aggregate
compile times, it more effectively leverages cores in parallel
builds and reduces the possibility of compiler crashes from
running out of resources.

3.4 GPU-to-GPU transfers
Modern GPUs used in HPC can perform direct GPU-to-
GPU communication. This provides GPUs with an efficient
mechanism to send data stored in their device memory
directly to another GPU’s device memory. This contrasts
with the traditional and costly GPU communication pattern
that required first copying the desired data from the first
GPU’s device memory to the system’s host memory and then
copying the data again from the host memory to the second
GPU’s device memory.

Enabling this feature in VTK-m required changes in the
source code of both VTK-m itself and DIY, which is a
third-party library that VTK-m uses to manage its MPI
(Message Passing Interface) communication (Peterka et al.
2011; Morozov and Peterka 2016).

The DIY library changes consisted of adding routines
that allow sending and receiving raw pointers directly and
encapsulated in a newly introduced “blob” data type, which
is roughly equivalent to the raw data buffers previously
described for VTK-m’s array management. This contrasts
with the regular operation of DIY, which usually copies and
serializes data before sending and receiving. Additionally,
we introduced a new API in DIY to control the ownership
of the passed raw pointer.

The corresponding VTK-m changes consisted of modi-
fying the VTK-m class that manages memory buffers and
their location among host and devices. In particular, the
changes overwrite the DIY serialization to directly pass these
memory buffers to and from DIY. This enables direct GPU
communication in VTK-m because most of the VTK-m
storage entities are composed of VTK-m buffers.

The main challenge found during the implementation of
this feature was maintaining compatibility with the Frontier
target system. Frontier’s software stack was a moving target
with frequent updates that—in many cases—required us to
modify build and runtime parameters and—in some other
cases—required us to change the VTK-m and DIY source
code. This challenge was minimized by provisioning the
VTK-m GitLab project with nightly jobs to build and run
tests on the Frontier test-bed system. This extra testing
allowed us to quickly identify problems that arose from
changes to either VTK-m’s source code or to the Frontier
software stack.

4 Operation on exascale hardware
The ECP’s exascale platforms are unique in many ways.
The previous section summarized the major software
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development hurdles faced when preparing for the platforms.
This section describes further technical challenges in
compiling and executing VTK-m.

4.1 Frontier
Frontier was the first system delivered under the ECP
program (Atchley et al. 2023). Deployed at the Oak Ridge
Leadership Computing Facility (OLCF), Frontier is also the
first system to achieve exascale by hitting 1.19 exaflops
on the High-Performance Linpack benchmark. Frontier is
an AMD-based system with 9,472 AMD Epyc CPUs (with
9,408 reserved for compute only) totalling over 600,000
cores. However, the majority of the processing power comes
from 37,888 AMD MI250X GPUs (with 37,632 reserved for
compute only) totalling over 8.3 million cores. The system
is organized into 74 racks, each comprising 64 blades with 2
nodes each. A node consists of a single CPU and 4 GPUs
with 4 TB of RAM. Each GPU consists of two Graphics
Compute Dies (GCD), which means that a node presents
itself to device code as having 8 GPUs. That leaves us with
a total count of 75,776 GCDs (with 75,264 reserved for
compute only).

Porting to a new system that is also under active
development brings many challenges. When the pre-exascale
development systems for Frontier became available, VTK-m
frequently broke the compiler. At one point in the build, test,
and release cycle for the compilers, AMD had the VTK-m
team building the compilers from bleeding-edge source to
help debug the crashes.

As the compilers stabilized, the team discovered another
issue—astronomically long compile times. As an anecdote
for a particularly long compile time, VTK-m development
switched over to a second system when it came online. A
week later, the system administrators for the pre-exascale
systems contacted us to ask if they could kill a compile job
because it was consuming all the memory on the login node.
It turned out that a VTK-m compile was still running on
the initial system more than a week later. More commonly,
VTK-m would take 20 hours to completely compile. The
team would work with AMD to test a new compiler, and
the cycle would begin anew. Thankfully, these compile-time
issues have been corrected. Currently, a full build of VTK-m
with tests and benchmarks can be completed on Frontier in
under 20 minutes.

Along the way there were many issues that required
solutions from AMD, Kokkos, and the VTK-m teams. Some
examples are as follows:

• Compiler Errors. VTK-m uses template metaprogram-
ming (Meyers 2005). Although this code is fully
C++14 compliant, it sometimes flexes the compiler
in unexpected ways and may cause internal compiler
errors. Resolving these issues requires dialog with the
compiler engineers.

• Optimizer Internal Looping. In addition to compiler
fixes, certain portions of the code found the compiler
optimizing the code too aggressively in extended
internal loops. Hints were added to prevent the
compiler from optimizing out of control. Furthermore,
the VTK-m source was broken into smaller units to

reduce template instantiation and to reduce compiler
resource utilization, as described in Section 3.3.

• Degradation of Sorting Parallelism. The original
Kokkos sorting algorithm had not accounted for
VTK-m workloads that used integral types (e.g.,
sorting keys). A binning algorithm that worked well
for uniformly distributed values degraded to a largely
serial process when many values landed in a single
bin. A simple fix by the Kokkos team provided a 12×
speedup in these workloads.

• Function Pointers Unsupported on AMD GPUs.
VTK-m was modified over several months to remove
all calls through function pointers as part of the
removal of virtual methods (as described in Section
3.2).

Figure 2. Output from VTK-m scaling study that demonstrated
rendering at full scale on the Frontier supercomputer.

When Frontier became available to the various code teams,
the VTK-m team at the University of Oregon undertook
an experiment to establish VTK-m’s scalability. The team
created Perlin noise data comprising 80 trillion cells and
distributed for a full-system run that used 9,400 nodes and
74,088 GPU GCDs. The total time to render this dataset was
300 ms (not including other processing such as isosurface
extraction). Figure 2 shows an example output from this test.

4.2 Aurora
The Aurora supercomputer is deployed at the Argonne
Leadership Computing Facility (ALCF) and is expected to
deliver over 2 exaflops of computational power. With 166
racks and 10,624 nodes, it boasts 21,248 Intel Xeon Max
Series CPUs and 63,744 Intel Data Center Max Series GPUs.

Our journey on Aurora began in August 2020 when we
started building VTK-m on the Joint Laboratory for System
Integration’s test platform at Argonne National Laboratory.
We began our work using the Iris test platform, which
consisted of 20 nodes equipped with Intel Gen 9 GPUs.
By September 2021, we transitioned to the Arcticus test
bed, which featured 17 nodes equipped with 2× Intel
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Server GPUs code-named Arctic Sound. In August 2022,
we conducted tests on the Florentia test platform, which
contained early versions of the Aurora GPUs. Finally, by
January 2023, our efforts shifted to Sunspot, the Aurora test
and development system, which had 128 nodes with 2× Intel
Xeon Max Series CPUs and 6× Intel Data Center Max Series
GPUs. The first light on Aurora occurred in August 2023.

Throughout our porting and testing efforts, we maintained
close collaboration with Intel engineers and ALCF
performance engineering staff. This collaboration led to the
identification and resolution of several bugs in successive
versions of the Intel oneAPI software development kit. In
November 2020, we completed a first set of early VTK-m
benchmarks on Iris by using Kokkos with OpenMP target
offload. However, in February 2021, we encountered issues
with virtual methods when transitioning to Kokkos with
SYCL. Fortunately, the team anticipated this problem and
had already started the process of replacing virtual methods
(see Section 3.2), and this issue was resolved soon after.
Additionally, we worked with Intel to address long build
times.

By December 2023, the latest VTK-m and Kokkos
development branches were successfully running on Aurora
and achieving a 97% success rate in regression testing.
Porting, deployment, and integration efforts are set to
continue on Aurora as we move beyond the ECP era.

5 Integration into visualization tools
Throughout the life of the ECP, the VTK-m team
collaborated heavily with other ECP software technology
teams. The scope of the VTK-m project was to provide
the fundamental technology to run scientific visualization
algorithms on GPUs, which account for the vast majority of
the computational power of current exascale machines. Other
ECP teams, most notably the ALPINE project, developed
tools that would leverage VTK-m while directly addressing
application needs. This arrangement avoided the redundant
work of multiple teams developing their own visualization
solutions and prevented users from having to use yet another
software interface. In this section, we discuss the major
visualization tools that we integrated VTK-m with.

5.1 ParaView
The VTK-m library provides high-performance implementa-
tions of several visualization algorithms for highly parallel
processors. However, features such as file I/O, rendering,
and pipeline management, which are all essential parts of
a full-featured visualization toolkit, are beyond the scope
of VTK-m. On the other hand, ParaView is a mature visu-
alization software that has robust implementations of these
features. Therefore, we wanted to integrate VTK-m into
ParaView in such a way that ParaView can use VTK-m filters
to accelerate its operations when a VTK-m implementation
and hardware that concurrently executes many threads is
available.

We also wanted the VTK-m accelerated filters to be as
easy to use as possible. Therefore, we chose to integrate
VTK-m using VTK and ParaView’s factory-instantiation
feature. Because ParaView is implemented on top of VTK
and internally relies on VTK filters, both VTK and ParaView

will be mentioned interchangeably in this section. Filters
in ParaView are instantiated via a factory method. There
can be multiple implementations available for a filter, and
the factory method chooses an appropriate implementation
at run time based on given criteria. With this method,
we can override the default ParaView filters with VTK-m-
based filters. Currently, VTK-m accelerated filters that
override traditional CPU implementations are available for
some commonly used filters such as contour, threshold,
and gradient. Additional VTK-m filters can be added by
providing additional overrides.

To override a ParaView filter, we first need to implement
a VTK-m wrapper filter in VTK to provide the interface
of the base VTK/ParaView filter and use VTK-m filters
and routines for its operation. The following steps provide
a high-level overview of how a VTK-m wrapper filter is
implemented in VTK/ParaView:

1. Check the filter parameters and only proceed with
VTK-m processing for configurations supported by the
VTK-m filter implementation.

2. Convert the input VTK datasets to VTK-m datasets.

3. Execute the VTK-m filter on the data.

4. Convert the output of the VTK-m filter back to VTK
datasets.

5. If an error occurs at any point during the above steps,
then fall back to the default VTK implementation.
Errors in VTK-m are typically signaled via C++
exceptions.

For the dataset conversion from VTK to VTK-m and
back, we implemented several helper routines. These are
zero-copy operations for most cases because, whenever
possible, only the ownership of the pointers to the underlying
resources is transferred. Even copies from host-to-device
and device-to-host are minimized by using a VTK-m dataset
wrapper in VTK called vtkmDataSet, which implements
the vtkDataSet interface and only copies the data when
required. Another commonly used ParaView functionality is
computing the range of the various fields of a dataset. This
has also been accelerated by using VTK-m, which speeds up
the computation and avoids memory transfer from device to
host.

Figure 3 shows an example of ParaView running with
VTK-m accelerated filters on Crusher, which is an early
access test bed for the Frontier system. As described in
Section 3.1, VTK-m is using the Kokkos device adapter on
this hardware. The bottom of the image shows the output
of the rocm-smi command, which is used to verify and
monitor the GPU usage by the filters.

VTK-m accelerated filter overrides are available in recent
releases of ParaView and can be enabled during building. If
enabled, the overrides can also be turned on or off at run time
using the ParaView settings (Figure 4).

5.2 VisIt
VisIt is a scientific visualization and analysis tool that
operates on mesh-based field data. Its functionality is
grouped into four major categories: plots, operators,
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Figure 3. ParaView with integrated VTK-m accelerated filters
running on Crusher, an early access test bed for the Frontier
system. VTK-m is using the Kokkos device adapter. The output
of the rocm-smi command is being used to verify and monitor
GPU usage by the filters.

Figure 4. Left: The Use Accelerated Filters ParaView
setting can be used to activate or deactivate accelerated filter
overrides at run time. This setting is shown regardless of
whether or not ParaView was built with the override support.
Right: The availability of the accelerated filter overrides on
clients and servers can be found in the About ParaView
dialog box.

expressions, and queries. All four of these capabilities are
built on a filter infrastructure that operates on mesh-based
fields. Plots are somewhat special in that they consist of
a rendering capability that may include some built-in filter
operations. To date, the VTK-m integration has consisted of

modifying the filter infrastructure to use VTK-m filters when
comparable VTK-m functionality exists.

Previously, VisIt’s filters used VTK filters and VTK
datasets. The filters were enhanced to support using both
VTK and VTK-m. When VTK-m is enabled in VisIt and
the filter supports VTK-m, the filter will use VTK-m. The
internal dataset representation was also modified to support
providing either a VTK dataset or a VTK-m dataset. When
the filter is set to use VTK, it will request the data as a VTK
dataset or convert the dataset to a VTK dataset if it is stored
as VTK-m. Conversely, when the filter is set to use VTK-m,
it will request the data as a VTK-m dataset and convert
it if necessary. It will use zero-copy conversions whenever
possible.

Figure 5. Visualization from a 70-billion cell WarpX simulation
and Gordon Bell submission (Fedeli et al. 2022) visualized with
2,048 GCDs on Frontier using VisIt.

Figure 5 depicts a WarpX simulation visualized with
VisIt and VTK-m. A laser from a laser wake-field electron
accelerator is impacting a solid gas target. The red and
blue surfaces represent the laser field and the gray surface
represents the target. This data is from a simulation that
was part of a series of simulations to help remove a major
limitation of compact laser-based electron accelerators,
which are promising candidates for next generation high-
energy physics experiments and ultra-high dose rate FLASH
radiotherapy (Fedeli et al. 2022). The image in Figure 5
was generated by VisIt running on Frontier and using 2,048
GCDs across 256 nodes. The surfaces were generated by
using the VTK-m contour filter and were rendered in parallel
by using Mesa 3D. VTK-m is using the Kokkos device
adapter for AMD GPUs.

5.3 Ascent
Ascent is a lightweight, in-situ visualization and analysis
library designed for running multiphysics simulations on
HPC systems. As an in-situ library as opposed to a post-hoc
visualization tool, Ascent shares execution resources with
the simulation and can process the data as it is generated,
thereby reducing I/O costs, although it must pause the
simulation to do so. To minimize the encumbrance on the
simulation and execution resources, Ascent’s lightweight
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Figure 6. Integration of the VTK-m isosurface uncertainty filter in ParaView using the plug-in approach for visualization of
large-scale supernova simulations (Sandoval et al. 2021).

design ensures a smaller memory requirement. It is written
using efficient distributed-memory and many-core libraries
to guarantee performance and scalability on current and next-
generation HPC platforms. Ascent has three main use cases:
creating pictures, transforming data, and capturing data.
Ascent is easy to use with only five API calls; supported in
C, C++, Python, and Fortran; and provides an infrastructure
to integrate custom analysis. The data interface between
simulation code and Ascent is managed through the Conduit
API (Harrison et al. 2022), which provides a simplified
interface for passing data and describing structure.

Although optional, VTK-m is a dependency for Ascent
because it is currently the only option for rendering low-
order mesh data and provides filters for transforming and/or
analyzing the simulation data (e.g., slice, histogram, con-
tour). Ascent also leverages VTK-m’s zero-copy capabil-
ities as well as its ability to pass device-pointers; these
features allow the simulation data to remain on the device
and be passed directly to Ascent and then on to VTK-m
without being transferred to host memory. VTK-m has
been integrated into Ascent via a (previously external)
library called VTK-h (VTK hybrid) that combines VTK-m’s
shared-memory, high-performance filters with MPI’s effi-
cient distributed-memory coordination.

Figures 7 and 8 show in-situ renderings of the WarpX
simulation (see Section 6.1 later in this paper) generated by
Ascent and executed on the OLCF’s exascale supercomputer,
Frontier. The simulation was executed at two resolutions:
578.8 million cells across 552 GCDs on 69 nodes and
4.63 billion cells across 4,416 GCDs on 552 nodes. Ascent
used VTK-m filters to upscale the data along multiple axes,
generate isosurfaces, and clip several fields before using
VTK-m’s raytracer and volume renderer to generate the final
images. To guarantee performance, VTK-m uses the Kokkos
device adapter for AMD GPUs.

5.4 Alternative delivery mechanisms
Integrating a new feature that was implemented with VTK-m
filters into visualization software such as ParaView or
VisIt can be a lengthy process. For example, making a
VTK-m filter available in ParaView requires multiple steps,

including implementing a VTK filter that wraps the VTK-m
filter, completing the arduous process of contributing the
change to the VTK project, and then repeating similar
steps in ParaView itself. Such time-consuming software
integration can hinder the availability of VTK-m filters inside
visualization tools and limit the opportunities for VTK-m
filters to increase the pace of scientific discovery.

Our ultimate goal is to make VTK-m filters practical for
real use and to put tools in the hands of end users in a
timely manner. An alternative approach to a full integration
through the visualization software stack is to provide this
functionality through a plug-in that is supported by tools such
as ParaView and VisIt. For the plug-in approach, the VTK-m
filter is still wrapped inside a VTK filter, but the time needed
for the software integration and testing in VTK and ParaView
can be bypassed.

Figure 6 illustrates the VTK-m isosurface uncertainty
filter (Wang et al. 2023; Athawale et al. 2021) made
available in ParaView via the plug-in method. The isosurface
uncertainty filter is one of the major successes of the VTK-m
library because it is the first production-level uncertainty
visualization filter deployed for efficient large-data analysis.
Using the plug-in method depicted in Figure 6, VTK-m
filters can be easily combined with existing filters in
ParaView for improved data comprehension.

6 Interfacing with applications
The ultimate goal of the VTK-m work for the ECP was
to provide scientists with the tools needed to understand
large amounts of data and make scientific discoveries. The
previous sections of this paper describe the efforts for
making these tools available. This section provides some
examples of applying VTK-m and its companion enabling
technologies to real-world science problems, which often
happens through the visualization tools described in the
previous section.

6.1 Laser wakefield acceleration
WarpX is a particle-in-cell simulation code and was awarded
the 2022 ACM Gordon Bell Prize (Fedeli et al. 2022). As
part of the ECP, WarpX was developed as a new application
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Figure 7. WarpX in-situ visualization of a laser-wakefield
accelerator on 4,416 GCDs across 552 nodes of Frontier
using Ascent and VTK-m. The image depicts an early time
step of the simulation at high resolution.

Figure 8. WarpX in-situ visualization of a laser-wakefield
accelerator on 552 GCDs across 69 nodes of Frontier using
Ascent and VTK-m. The image depicts a later time step of the
simulation at low resolution.

to succeed its predecessor, Warp (Vay et al. 2012), with
the goal of studying advanced particle acceleration in
laser-driven plasma wakefields in an effort to advance
future high-energy physics colliders (Albert et al. 2021).
Beyond that, WarpX is used to describe kinetic physics in
particle accelerators, laser-plasmas, fusion devices, inertial
confinement fusion, and astrophysical plasmas and to model
microelectronics (Yao et al. 2022).

Figures 7 and 8 are in-situ renderings of a staged laser
wakefield accelerator in a boosted reference frame (Vay et al.
2011). An electron beam (orange-green) is accelerated to the
right through multiple stages to high energies. In the plasma
stages (gray), the strong traversal focusing fields are shown
in red-blue.

In the staging approach, a particle beam is accelerated
through multiple plasma elements. In each stage, an ultra-
intense laser pulse excites a plasma wakefield. This depletes
the laser pulse’s energy and generates very strong electric
fields in the plasma wake, which can be used to accelerate
an injected electron beam. The acceleration itself can
be 3–4 orders of magnitude more compact than relying
on state-of-the-art radio-frequency accelerator elements.
Besides increased beam energy, physicists study how to
preserve beam properties essential for transport, focusing
(e.g., emittance), and applications (e.g., charge and current).

WarpX features advanced techniques such as GPU-
acceleration for three vendors, mesh-refinement capabilities,
dynamic load balancing, and unique advanced numerical
solvers. WarpX relies on multi-level parallelization: coarse
parallelization uses block-structured domain decomposition
with MPI using the AMReX library (Zhang et al. 2019),
and compute acceleration leverages CUDA/HIP/SYCL or
OpenMP so that the simulations can scale on large, massively
parallel HPC systems.

If WarpX relied on only traditional post-processing
workflows for the visualization of the dynamics of exascale
simulations, the resulting multi-petabyte scale output per
simulation would severely limit the available snapshots
and/or level of detail to visualize. Addressing this need,
WarpX interfaces with Ascent for in-situ visualization.
For this, utility routines for specialized WarpX diagnostics

for application-specific descriptions were implemented in
AMReX. WarpX performs data preparation steps for
diagnostics in situ, shares the respective AMReX memory
buffers with zero-copy APIs through Conduit with Ascent,
and renders with VTK-m in the same domain-decomposition
and on the same compute device as the simulation itself.

Realistic visualization of particle trajectories (advection)
in a plasma or particle accelerator requires high temporal
fidelity in traditional workflows, and this fidelity can create
significant data overhead. With VTK-m, an opportunity
to significantly reduce data input for such workflows was
identified by using a physics-motivated advection algorithm
and the slowly changing nature of fields in a wakefield
accelerator.

Plasma particles such as electrons and ions are inert and
can be relativistic, which effectively changes their mass as
they move. Traditional advection algorithms only used local
properties of fields without accounting for a history or inert
nature of a streamline. As in a particle-in-cell algorithm, the
realistic track of a charged plasma particle can be integrated
following the Lorentz-Force, which interpolates six local
field components (Ex,y,z, Bx,y,z) and advances the particles’
momentum (inertia) and position with an explicit iteration
scheme (Boris 1970). The updated momentum is tracked
over the path of a streamline to account for the evolving
particle.

With this advection algorithm integrated in VTK-m, a
snapshot of a simulation can be used to project the particles’
physical position forward (and backward) for a meaningful
time under the realistic assumption that fields are quasi-
static (i.e., do not change much in time) besides translation
along an axis. Figure 9 shows such particle trajectories of
an off-axis injected electron beam in a wakefield calculated
from a single snapshot and reproducing physical betatron
oscillation.

6.2 Tokamak fusion reactor
Fusion energy research focuses on understanding the science
needed to develop energy sources based on the controlled
fusion of light atomic nuclei. One strategy to achieve
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Figure 9. Side and front views of a laser wakefield with an injected electron bunch. Particles are advected from a single snapshot
of the simulation in VTK-m.

fusion involves a device called a tokamak, which uses
magnetic fields to confine a hot plasma in the shape
of a torus. Significant efforts are currently underway to
prepare for ITER, a large experimental fusion reactor
under construction in France. The Whole Device Model
Application (WDMApp) is a project in the ECP that aims
to develop a high-fidelity model of magnetically confined
fusion plasma in tokamaks. WDMApp is critical in the
efforts to plan experiments on ITER and optimize the design
of future next-step fusion facilities. These devices will
operate in physics regimes not achieved by any current or
past experiments, thereby making advanced and predictive
numerical simulation the best tool for the task.

The behavior and evolution of the magnetic field in
a tokamak is complex, and its control is critical for
performance. For these reasons, analysis tools used for
understanding the dynamic nature of the magnetic field
are critical. The complexity of the 3D magnetic field lines
makes analysis and visualization difficult. Because the field
lines are periodic, this complexity can be reduced by using
a Poincaré magnetic field-line puncture map (Sanderson
et al. 2010). The Poincaré map is the intersection of a
field line with a lower-dimensional subspace (called the
Poincaré section). In our case, the Poincaré section is a
2D plane that is perpendicular to the axis of the tokamak.
Given a set of magnetic field lines, the Poincaré map (i.e.,
the intersection of the magnetic field lines with the plane)
provides a concise representation of the magnetic field and
is easier to understand and analyze. Figure 10 shows some
examples of Poincaré plots generated by VTK-m.

In practice, the Poincaré map is generated by creating
many field lines and plotting each intersection, or puncture,
with the plane. After a sufficient number of punctures has
been collected, patterns in the map characterize the features
in the magnetic field. The field lines are computed by
modeling massless particles that follow magnetic field lines.
These massless particles can follow magnetic field lines by
advecting them in the direction of the magnetic field. The

intersections generated from a single particle characterize the
features of the magnetic surface at that position. The particles
are advected using a differential equation solver such as the
fourth order Runge-Kutta scheme.

Proper characterization of the magnetic field requires
a large number of initial positions (typically tens of
thousands), each of which typically results in between 1,000
and 3,000 intersections, with each intersection following a
field line all the way through the tokamak’s torus. Because
of these numerous features, the computation of a Poincaré
map can be very expensive. The WDMApp team has a
Poincaré map code that runs on CPUs and takes several
hours for the largest analysis run. The high cost of the
analysis is due to two main factors: (1) the many particles and
intersections required and (2) the complexity of the magnetic
field calculation. In many applications of particle advection,
the vector field is calculated at the nodes of each cell in the
mesh. Linear interpolation within the cell is used to evaluate
the magnetic field for the particle being advected. Because of
the large number of advection steps required for each particle
in the Poincaré map, small errors can rapidly accumulate.
These errors are compounded because the evaluation of the
magnetic field requires a complex set of calculations, and
these calculations require high-order interpolation of several
quantities.

Using VTK-m can significantly accelerate the compu-
tation of Poincaré maps by leveraging the parallelism of
GPUs. Because the trajectory of each particle is completely
independent, the task can be parallelized over each particle.
Using this approach, a Poincaré map can be computed in
under 3 minutes. The wall-clock time for a typical WDMApp
simulation step is between 1.5 and 2 minutes, which means
that Poincaré maps can be computed in situ in nearly real
time. When WDMApp is run, the EFFIS workflow control
system (Suchyta et al. 2022b) allocates an additional 1–
2 nodes for the Poincaré map analysis. As a simulation
step completes, EFFIS launches a Poincaré analysis task
on GPUs in the node in a round-robin fashion. This allows
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Figure 10. Poincaré maps from two different time steps from a simulation run at the Oak Ridge Leadership Computing Facility
generated by VTK-m. The particles were placed near the edge of the tokamak where the plasma becomes very turbulent. The
Poincaré map shows magnetic features in the plasma as the simulation progresses. Of particular interest are the long fingers that
appear in the lower portion of the image. The evolving shape of these fingers over time provides valuable insight into the behavior
of the magnetic field where the turbulence is extremely high.

asynchronous analysis to be performed on the additional
nodes while the simulation is running. Because EFFIS was
already being used as a code-integrating technology, it was
straightforward to integrate VTK-m directly into this system.
Figure 10 shows Poincaré maps from two different time steps
of a simulation run at the OLCF. Real-time generation of
Poincaré maps provides the WDMApp team with unprece-
dented capability for analysis of magnetic fields in fusion
simulations.

6.3 Impact beyond ECP

In addition to the applications mentioned above, VTK-m still
serves as the key infrastructure for accelerating data analysis
and visualization in various scientific applications through
in-situ visualization. This subsection lists several examples
and illustrates how VTK-m is integrated into in-situ scientific
workflows outside of the ECP.

Post hoc processing:
data reconstruction, interactive

visualization, etc

Numerical simulation

                  in situ filter and rendering

Reduced data

Figure 11. The in-situ reduction + post-hoc paradigm based on
VTK-m.

Before being selected as a project in the ECP, VTK-m
was a core component in the Visualization for the Extreme-
Scale Scientific Computation Ecosystem (XVis) (Moreland
et al. 2019) project. XVis focused on multiple ways to
integrate in-situ visualization with the simulation, extract
key information, and decrease the data size for post-hoc
processing. The in-situ reduction + post hoc paradigm
(Figure 11) is adopted in multiple scientific domains within
and outside of the ECP, such as probability distribution
function extraction of fields in combustion simulation (Ye
et al. 2016) and binning mechanisms to reduce the data size
of fusion simulation (Kress et al. 2018). We use two recent
efforts as examples to illustrate how VTK-m facilitates
scientific workflows beyond the ECP.

Nyx is a cosmological simulation code that aims to solve
compressible hydrodynamics with N -body treatment of dark
matter. Each simulation run may contain hundreds of time
steps with multiple sets of simulation input parameters.
The raw data size is usually hundreds of terabytes to
several petabytes—a size that presents challenges when post-
processing the data. VTK-m is used for in-situ analysis
to extract the statistical properties of the down-sampled
data to significantly reduce the size of raw data. The
associated statistics model can be used to construct the data
based on prior knowledge in post-processing with low data
reconstruction error (Wang et al. 2019).

Eddy detection and tracking play key roles in analyzing
the data generated by ocean simulations. Understanding
the characteristics of eddies can help scientists explain the
regional air-sea interactions. The VTK-m streamline filter
can be used as an in-situ analysis to generate streamline data
used for interactive post-hoc analysis (Han et al. 2022). With
the help of VTK-m, the associated eddy analysis workflow
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can improve the interaction speed, reduce data storage, and
meet the needs of real-time visual analysis interaction.

7 Conclusion
Although their use in HPC was novel a decade ago,
GPUs and accelerators have become a staple of HPC
hardware and are now used in over 1/3 of the top 500
fastest supercomputers in the world.* Efficient use of
these accelerators is critical for good performance on HPC
systems, and VTK-m provides this functionality for scientific
visualization.

Moreover, the ECP has been instrumental in making
VTK-m available on today’s GPU-reliant exascale machines.
Many challenges were overcome with porting and integrating
the software, and we are proud to have helped application
scientists better analyze, explore, and understand their data.
We anticipate the use of VTK-m in high-performance
visualization software to be even more critical as HPC
continues to evolve.
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