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Critical Point Visualization

Hurricane Tracking

Oceanology
Biology

Critical point visualization with the 
Topology Toolkit (TTK)
[Tierny et al., 2018]

Climatology



Noise in Data Creates Uncertainty in
Critical Point Positions



Uncertainty Visualization of Critical Points
for Trusted Analysis



Uncertainty Visualization of Critical Points
for Trusted Analysis

State of the art [Petz et al., 2012, Liebmann and Scheuermann, 2016, Vietinghoff et al., 2022]:  
(1) resorts to computationally expensive Monte Carlo sampling 
(2) restricted to parametric (e.g., uniform, Gaussian) noise models



Our Contribution
(Upto 411× speed-up compared to Monte Carlo)



Uncertainty Visualization: Other Related Work
• Confidence intervals and likelihood of critical points

[Mihai and Westermann, 2014, Günther et al., 2014,  Vietinghoff et al., 2022]

• Uncertainty visualization algorithms
Scalar fields (Isosurfaces [Pöthkow et al. 2013, Athawale et al. 2016], Direct Volume Rendering [Liu et al., 
2012], Contour trees [Wu et al. 2012, Yan et al., 2020], Persistence diagrams [Vidal et al., 2020]), Vector fields 
(Streamlines [Ferstl et al., 2016], Finite-time Lyapunov exponents [Guo et al., 2016]), Tensor fields (diffusion 
tensor [Siddiqui et al., 2021] and HARDI [Jiao et al., 2012] imaging)

• Distribution models of uncertainty
Independent uniform/Gaussian [Athawale et al., 2013, Günther et al., 2014], Correlated Gaussian [Pöthkow et al. 
2013, Petz et al., 2016], Nonparametric [Pöthkow et al. 2013, Liu et al., 2012, Athawale et al. 2020]

• Acceleration of uncertainty computation
ML for uncertainty [Han et al., 2022], FunMC2: GPU acceleration [Wang et al., 2023], Hierarchical data structures 
[Li et al., 2024]

• Rendering of uncertainty
Colormapping [Rhodes et al., 2003], Elevation maps [Petz et al., 2012], Glyphs [Wittenbrink et al., 1996]



Background and Problem Statement
Critical points in deterministic data
(This work only considers uniform-grided data)
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Background and Problem Statement
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Critical points in uncertain data?
(Most real data have uncertainty)

Assumption: uncertainty over finite support

Under uncertainty, 
we cannot 
deterministically 
classify if a point is 
critical!
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Critical points in uncertain data?
(Most real data have uncertainty)
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Background and Problem Statement

What is the probability of “point p” to be 
a local minimum? (1D case)?

~



Approach
Pr(local minimum)X1
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Independence assumption:



Approach: Piecewise Integral
Pr(local minimum)X1
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bmin = min(b1,b2,b3) 

The red range is always greater than X2! = 0

simplifies to
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Approach: Piecewise Integral
Pr(local minimum)X1
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= PdfX1
The green range is always smaller 
than X2 and X3
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simplifies to



Approach: Piecewise Integral
Pr(local minimum)X1

X2

X3

a1 b1

a2 b2

a3 b3

= 

= 

simplifies to

PdfX1 PdfX2



Approach: Piecewise Integral
Pr(local minimum)X1
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simplifies to

Pdfjoint



Approach: Observations for the Integral 
Computation Algorithm
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(1) Pieces depend on the order of start points [a1, a2, a3] and bmin

(2) Four types of integration simplifications (integration templates):   

PdfX1 PdfX1 Pdfjoint, , ,

Pr(local minimum) =

PdfX2 PdfX1 PdfX3



Approach: Observations for the Integral 
Computation Algorithm

X1
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Pr(local minimum) = 0
P1 P2 P3

a2

a3

bmin = min(b1,b2,b3) 

(1) Pieces depend on the order of start points [a1, a2, a3] and bmin

(2) Four types of integration simplifications (integration templates):   

PdfX1 PdfX1 Pdfjoint, , ,

Pr(local minimum) =

PdfX2 PdfX1 PdfX3

Thanks to 
Wolfram 
Alpha!!



Approach: Local Minimum Probability
Algorithm
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(1) Sort a1, a2, a3, and bmin to determine pieces Pi

(2) Compute (precomputed) integral templates on the fly and sum them up

Algorithm:



Approach: Local Minimum Probability 
Algorithm

X1
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Pr(local minimum) = 0
P1 P2 P3

a2

a3

bmin = min(b1,b2,b3) 

Pr(local minimum) =

Algorithm:
Time complexity: O(nlogn),
n = # start points ai
(extremely efficient and 
accurate than Monte Carlo!)(1) Sort a1, a2, a3, and bmin to determine pieces Pi

(2) Compute (precomputed) integral templates on the fly and sum them up



Algorithmic Intricacies

1D Case (2 neighbors) 2D Case (4 neighbors)

More integral templates/simplifications!



Algorithmic Intricacies: Nonparametric Noise
Models

Capture more realistic shape of distributions compared to parametric models
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Pr(local minimum)

= # histogram bins



Algorithmic Intricacies: Nonparametric Noise
Models

Capture more realistic shape of distributions compared to parametric models

i j

k

l

m

Pr(local minimum)

= # histogram bins

Time complexity: O(h5),
(UQ more accurate than 
parametric, but inefficient!)



Algorithmic Intricacies: Nonparametric Noise
Models

Two approaches to enhance the performance of nonparametric models:

i j

k

l

m

- Semianalytical solution
Time complexity: O(nh),
(n: # Monte Carlo samples,
h: # histogram bins) 

- VTK-m GPU acceleration
Probability computation per point
is independent of others



Results: Synthetic Data

Ackley function [Ackley, 1987]

Add uniform
noise

50 ensemble 
members

(64× speedup with
respect to 2000 MC)

Local maximum
probability

Local maximum
probability

Local maximum
probability



Results: Synthetic Data

(119× speedup with
respect to 2000 MC)

Saddle
probability

Saddle
probability

Saddle
probability

Ackley function [Ackley, 1987]

Add uniform
noise

50 ensemble 
members



Results: Synthetic Data



Results: Synthetic Data



Results: Synthetic Data



Results: Synthetic Data



Results: Real Data

(411×:closed-form solution
4×:VTK-m implementation)Compute resources: Frontier supercomputer 

Climate Data: Energy Exascale Earth System Model (E3SM) 

Compressor: MGARD [Gong et al., 2023], Compression ratio: 16.68
Data compression use case: compression error bound used to model data uncertainty



Results: Real Data Oceanology: Red Sea simulation data [Sanikommu et al., 2020]

Ensemble data use case: 20 ensemble members of the velocity magnitude dataset each with data
resolution 500×500

Compute resources: Frontier supercomputer 

0.094s 0.102s 0.167s 0.145s Critical point visualization with the 
Topology Toolkit (TTK)
[Tierny et al., 2018]



Results: Real Data Oceanology: Red Sea simulation data [Sanikommu et al., 2020]

VTK-m implementation enables seamless integration of our methods into ParaView for broader accessibility.

ParaView
[Ahrens et al., 2005]



Conclusion and Future Work
• Closed-form framework for accurate and efficient critical point 

probability computation (upto 411× speed-up)

• Integration of closed-form framework with VTK-m library for near-real-time
computation of critical point uncertainty (upto 1646× speed-up)

• Seamless integration with ParaView using VTK-m for broader accessibility 

• Future work: Closed-form uncertainty framework for critical points with 
six/eight neighbors, 3D data, other topological visualizations 
(e.g., persistence diagrams, contour trees)
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