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Fig. 1: Demonstration of our critical point uncertainty filter inside ParaView [2] to provide near-real-time results for the Red Sea
ensemble dataset [6] with computations performed using VTK-m [5] parallel code on a GPU backend.

Abstract—This paper presents a novel end-to-end framework for closed-form computation and visualization of critical point uncertainty
in 2D uncertain scalar fields. Critical points are fundamental topological descriptors used in the visualization and analysis of scalar
fields. The uncertainty inherent in data (e.g., observational and experimental data, approximations in simulations, and compression),
however, creates uncertainty regarding critical point positions. Uncertainty in critical point positions, therefore, cannot be ignored,
given their impact on downstream data analysis tasks. In this work, we study uncertainty in critical points as a function of uncertainty
in data modeled with probability distributions. Although Monte Carlo (MC) sampling techniques have been used in prior studies
to quantify critical point uncertainty, they are often expensive and are infrequently used in production-quality visualization software.
We, therefore, propose a new end-to-end framework to address these challenges that comprises a threefold contribution. First, we
derive the critical point uncertainty in closed form, which is more accurate and efficient than the conventional MC sampling methods.
Specifically, we provide the closed-form and semianalytical (a mix of closed-form and MC methods) solutions for parametric (e.g.,
uniform, Epanechnikov) and nonparametric models (e.g., histograms) with finite support. Second, we accelerate critical point probability
computations using a parallel implementation with the VTK-m library, which is platform portable. Finally, we demonstrate the integration
of our implementation with the ParaView software system to demonstrate near-real-time results for real datasets.

Index Terms—Topology, uncertainty, critical points, probabilistic analysis

1 INTRODUCTION

We divide this supplement into four parts. First, we present the detailed
algorithms and illustrations for critical point probability computation

• Tushar M. Athawale, Zhe Wang, David Pugmire, Kenneth Moreland, Qian
Gong, and Scott Klasky are with the Oak Ridge National Laboratory.
E-mail:{athawaletm, wangz, pugmire, morelandkd, gongq,
klasky}@ornl.gov

• Chris R. Johnson and Paul Rosen are with the University of Utah E-mail:
{crj, paul.rosen}@sci.utah.edu

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

for the four-pixel neighborhood case (Sec. 4.2 of the main paper). Sec-
ond, we show quantitative and qualitative correctness of our algorithms
for the uniform, Epanechnikov, and histogram (closed-form and semi-
analytical) models through comparisons with the Monte Carlo (MC)
solutions. Third, we present quantitative evaluation for the climate
dataset [4] used in the main paper. Finally, we show seamless integra-
tion of our parallel VTK-m [5] implementation inside ParaView [2].
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2 CRITICAL POINT PROBABILITY COMPUTATION FOR FOUR-
PIXEL NEIGHBORHOOD

2.0.1 Local Minimum Probability
The probability of point p being a local minimum, Pr(p = lmin), can be
computed by integrating the joint probability Pr joint over its support
where random variable X1 is simultaneously smaller than all neigh-
boring random variables (i.e., X2, . . . ,X5). Mathematically, the local
minimum probability computation can be represented as follows:

Pr(p = lmin)

= Pr[(X1 < X2) and (X1 < X3) and (X1 < X4) and (X1 < X5)]

=
∫ x1=bmin

x1=a1

∫ x2=b2

x2=max(x1,a2)
· · ·

∫ x5=b5

x5=max(x1,a5)
(Pdf joint)dx,

where bmin = min(b1,b2,b3,b4,b5)

(1)

Equation (1) represents the core integration formula for the computation
of local minimum probability at a domain position p. We now explain
the integral limits in Eq. (1) and our proposed piecewise integration
algorithm to compute the formula in Eq. (1).

Limits a1 and bmin of the outer integral in Eq. (1) : The outer
integral of Eq. (1) indicates the portion of data range of a random vari-
able X1 (i.e., [a1,b1]) that can result in point p being a local minimum.
In particular, the portion [a1,bmin] (with a1 < bmin) of random variable
X1 can result in point p being a local minimum, where bmin denotes the
minimum among b1, . . . ,b5. In contrast, the data range [bmin,b1] for
bmin ̸= b1 cannot result in a point p as a local minimum (lmin) because
it will be always greater than one of the random variables X2, X3, X4,
and X5 depending on if bmin = b2, bmin = b3, bmin = b4, or bmin = b5
respectively. Mathematically, for any value x1 ≥ bmin, Pr(p = lmin) = 0.
In the case bmin < a1, then Pr(p = lmin) = 0 because at least one ran-
dom variable among Xi with i ∈ {2,3,4,5} will be always smaller than
X1.

Limits max(x1,ai) and bi of the inner integrals in Eq. (1): The
four inner integrals in Eq. (1) integrate the joint distribution Pdf joint
over its support where random variables X2, . . . ,X5 are simultaneously
greater than x1 ∈ [a1,bmin] in the outer integral. The inner integral
lower limits are max(x1,ai) for i ∈ {2,3,4,5}. The maximum is taken
because the support of a random variable Xi is restricted to [ai,bi].
Thus, for x1 < ai in any inner integral, the entire support [ai,bi] with
i ∈ {2,3,4,5} will always be greater than x1, and the inner integral
does not depend on the value of x1. In contrast, for x1 > ai, the inner
integration depends on the value of x1 because x1 assumes values in
the support of distributions. It is guaranteed that the upper limit of
inner integrals in Eq. (1) is greater than their respective lower limit,
i.e., bi ≥ max(x1,ai), for two reasons. First, for any random variable
Xi, we assume ai < bi. Second, the maximum value of x1 is equal
to bmin = min(b1,b2,b3,b4,b5) based on the outer integral (see the
previous paragraph), and it cannot exceed the upper limits bi with
i ∈ {2,3,4,5} in inner integrals. Depending upon if the max(x1,ai) is
equal to x1 or ai, the integral in Eq. (1) can be simplified and computed
differently, which necessitates the evaluation of the integral in Eq. (1)
in a piecewise manner, as described next.

Piecewise simplification of Eq. (1): The core integration formula
in Eq. (1) can be simplified differently for different subsets of the range
of the outer integral (i.e., [a1,bmin]). We refer to each subset as a piece
P. For a piece P, where x1 < ai, ∀i ∈ {2,3,4,5}, the inner integrals
in Eq. (1) attain the range xi ∈ [ai,bi], ∀i ∈ {2,3,4,5}. In other words,
the inner integrals do not depend on x1. Thus, the integration over
the entire support of random variables Xi, ∀i ∈ {2,3,4,5}, simplifies
Eq. (1) to the integration over a marginal distribution of X1 for the piece
P, i.e.,

∫
x1∈P PdfX1(x1)dx1.

For a piece P, where x1 ∈ [a2,b2] and x1 < ai, ∀i ∈ {3,4,5}, the
inner integrals in Eq. (1) attain the range x2 ∈ [x1,b2] and xi ∈ [ai,bi],
∀i ∈ {3,4,5}. In this case, only the first inner integral related to the
range of random variable X2 depends upon x1. Thus, Eq. (1) simplifies
as the integration over the joint distribution of X1 and X2 for the piece

Function computeLocalMinimumProbability()
Input: Intervals I = [[a1,b1], . . . , [a5,b5]]
Output: Pr(p = lmin)
bmin = min(b1, . . . ,b5)
if bmin < a1 then

return 0
else
/* Task1: Break the outer integral in
Eq. (1) into pieces Pi */

Isorted = sort(I) based on start points ai
ida1 = Index of the interval in Isorted that starts with a1
idbMin =

Index of the interval in Isorted that contains bmin

/* Task2 and Task 3: Compute piece
integrals */

localMinimumProbability =
computePieceIntegrals(ida1, idbMin, Isorted ,bmin)

return localMinimumProbability
end
Algorithm 1: Computation of local minimum probability

P, i.e.,
∫

x1∈P PdfX1(x1)PdfX2(x2)dx2 dx1. In summary, various pieces
of the outer integral in Eq. (1) can be simplified differently based on if
the inner integrals depend on x1 or not.

Algorithm for computing local minimum probability: The com-
putation of the core integration formula in Eq. (1) depends on the
ordering of start points ai with i ∈ {1,2,3,4,5} and bmin. Thus, there
are 6! = 720 permutations of ai and bmin. We, therefore, devise an
efficient algorithm that computes the piecewise integrals on the fly
depending on the observed permutation of ai and bmin without needing
to go through all permutations.

We now describe our Algorithm 1 for computation of local minimum
probability at a domain position p (i.e., Pr[p = lmin]). The algorithm
comprises the three main tasks. Task 1: Determination of pieces Pi
of the outer integral in Eq. (1) needed for performing piecewise
integration. Initially, we compute bmin. If bmin < a1, then there are
no pieces or Pr(p = lmin) = 0. If bmin > a1, then we sort intervals
representing uncertain data ranges (i.e., [ai,bi]) based on their start
points ai and keep them in the array named Isorted . We note the index of
the interval corresponding to [a1,b1] in Isorted (referred to as ida1 ) and
the index of interval in Isorted from the end that contains bmin (referred
to as idbmin ), as a1 and bmin constitute limits of the outer integral in
Eq. (1). Any start points ai contained in the range of indices ida1 and
idbmin determine the pieces Pi for integration. This process generalizes
to any ordering of ai to determine the pieces pi of the outer integral in
Eq. (1).

Next, we compute the integration for piece P1 denoted as IP1 . Task
2: Integration over piece P1 of the outer integral range [[[aaa111,,,bbbmin]]].
The integration for piece P1 depends on the intervals that started before
a1 because the inner integral in Eq. (1) depends on x1 for a random
variable Xi (with i ∈ 2,3,4,5) started before a1, as max(x1,ai) is equal
to x1. The Task 2 in Algorithm 2, therefore, corresponds to finding
the intervals that started before ida1 (by looking up the Isorted array),
which also determines the upper limits of inner integrals for piece P1
(denoted by the array upLimits in Algorithm 2) depending on observed
order of intervals. In particular, the lowLimit and upLimits[1] in Task
2 of Algorithm 2 store the limits of the outer integral for piece P1. The
remaining entries in the upLimits array are used to store the upper
limits of inner integrals based on the order they are observed.

The computation of the integral in Eq. (1) for piece P1 (as well as any
arbitrary piece Pi) simplifies to one of the five types of integration for-
mulae, which we call integration templates. The integration templates
are presented in Algorithm 3. Depending on the number of upper limits
set (denoted by a variable hi in Algorithm 3), the integral template
varies. If there is no overlap with a piece, then the integral in Eq. (1)
simplifies to the integration of the probability distribution of random
variable X1 over a piece, which corresponds to setting h1 and the usage
of Template 1 in Algorithm 3. If only one random variable is over-



Fig. 2: Tasks summarizing our algorithm for computing local minimum probability for uncertain data.

Function computePieceIntegrals()
Input: ida1, idbMin, Isorted , bmin
Output: Sum of integrals over pieces Pi

/* Initialize the upper limits of outer and
inner integrals for a piece */

upLimits = [None,None,None,None,None]
totalIntegral = 0

/* Task2: Compute integral for piece P1 */
/* Determine the upper limit of piece P1 */
lowLimit = a1
if ida1 < idbMin then

upLimits[1] = Isorted [ida1 +1][1]
if ida1 == idbMin then

upLimits[1] = bmin
/* Find intervals started before a1 and set
respective upper limits for inner
integrals */

for k = 1 to (ida1 −1) do
upLimits[k+1] = Isorted [k][2]

end
IP1 =

integralTemplate(lowLimit,upLimits[1],upLimits[2],
upLimits[3],upLimits[4],upLimits[5], Isorted)

totalIntegral+= IP1

/* Task3: Compute integral for successive
pieces */

for k = (ida1 +1) to idbMin do
/* Determine piece limits */
lowLimit = Isorted [k][1]
if k < idbMin then

upLimits[1] = Isorted [k+1][1]
else

upLimits[1] = bmin
/* Determine the upper limit of new
interval */

upLimits[k] = Isorted [k][2]
IPnext =

integralTemplate(lowLimit,upLimits[1],upLimits[2],
upLimits[3],upLimits[4],upLimits[5], Isorted)

totalIntegral+= IPnext

end
return totalIntegral

end
Algorithm 2: Computation of the integral for piece P1 and suc-
cessive pieces Pnext

lapping with a piece, then the integral in Eq. (1) simplifies to integral
over the joint distribution of X1 and a random variable corresponding
to overlapping interval. One overlapping interval corresponds to setting

only h1 and h2 and the usage of Template 2 in Algorithm 3. Note that
the parameters θi in Algorithm 3 capture the probability distribution
functions to consider in templates by looking up the Isorted array. The
probability distributions to consider essentially depend on the ordering
of intervals [ai,bi] and are captured on the fly by parameters θi.

Having determined the integration for piece P1, we compute integra-
tion for successive pieces (denoted as IPnext in Algorithm 2). Task 3:
Integration over piece Pi with i > 1. Essentially, each new start point
ai with i ∈ {2,3,4,5} observed between the outer integral limits a1 and
bmin of Eq. (1) creates a new piece. Generally speaking, each new start
point ai results in different simplification of Eq. (1) because max(x1,ai)
in Eq. (1) becomes equal to x1 at each new start point. Thus, encoun-
tering a new start point adds one inner integral in a simplified form
compared to the piece before encountering a new start point. Finally,
integration of all pieces (i.e. IP1 and IPnext in Algorithm 2) is summed to
compute the local minimum probability at a point p, i.e., Pr(p = lmin).

Illustration of local minimum probability computation: Fig. 2
illustrates our method for computing the local minimum probability for
a domain point p. As shown for the example in Fig. 2, a5 < a2 < a1 <
a4 < b2 < a3 < b1 < b5 < b3 < b4. Initially, we determine the range of
a random variable X1 that can result in point p being a local minimum.
As shown in Fig. 2a, each value in the range [x1 = a1,x1 = (bmin = b2)]
has a nonzero probability of being simultaneously smaller than the
neighboring random variables (i.e., X2, . . . ,X5). In contrast, the range
[x1 = (bmin = b2),x1 = b1] is always greater than the random variable
X2, and therefore, cannot result in point p as a local minimum.

In Task 1, we determine the pieces Pi of the range [x1 = a1,x1 =
(bmin = b2)]. As depicted in Fig. 2, the array Isorted has intervals
ordered by ai, where a5 < a2 < a1 < a4 < a3. For this Isorted , ida1 = 3
and idbmin = 4. Since a4 is a start point in interval indexed by idbmin ,
it divides the outer integral range [a1,bmin] in Eq. (1) into two pieces
(depicted in blue and orange in Fig. 2).

In Task 2, we determine the simplification of the formula in Eq. (1)
for piece P1. The simplification for piece P1 = [a1,a4] in Fig. 2 (denoted
by blue) depends on the number of intervals that started before a1. As
observed in Fig. 2, the intervals [a5,b5] and [a2,b2] start before a1.
Since in piece P1, x1 < a3 and x1 < a4, the formula in Eq. (1) integrates
random variables X3 and X4 over their entire support and simplifies to
the integration over the joint distribution of random variables X1, X5,
and X2 shown in Fig. 2b.

In Task 3, we determine the simplification of the formula in Eq. (1)
for successive pieces formed by each new start point ai ∈ [a1,bmin]. In
Fig. 2, the start point a4 ∈ [a1,bmin] results in a new piece P2 shown
in orange. All inner integrals for piece P2 stay the same as piece P1
except for one newly added inner integral with limits [x1,b4], as shown
in Fig. 2c, because x1 = max(x1,a4) for piece P2, unlike the piece P1 in
which a4 = max(x1,a4). Thus, we make such updates to inner integrals
for each new piece corresponding to a new start point ai ∈ [a1,bmin].

Time complexity: Algorithm 1 initially sorts intervals based on
start points ai with i ∈ a1 . . .a5 and bmin to determine pieces for inte-



gration (Task 1), which is a constant time operation. Task 2 and Task
3 in Algorithm 2 comprise a single loop, which runs a maximum of
five times corresponding to five entries of a sorted interval array Isorted .
Each loop computes the integral template (Algorithm 3) on the fly in
constant time. The algorithm is, therefore, linear time complexity with
the number of input intervals and extremely efficient.

Function integralTemplates()
Input: Integral limits l1,h1 = None,h2 = None,h3 =

None,h4 = None,h5 = None
Input: Isorted denoting parametric distribution ranges

sorted by start points ai.
Output: Integral over piece [l1,h1]
/* Determine pdfs parameters θ based on
intervals sorted based on start points ai
except for interval [a1,b1] */

k = 1
for i = 1 to 5 do

if (i == ida1) then
continue

else
θk.a = Isorted [i][1],θk.b = Isorted [i][2]
k = k+1

end
/* Template 1 */
if h1 ̸= None and others = None then

I =
∫ h1

l1
pd fx,a1,b1

/* Template 2 */
else if h1 ̸= None and h2 ̸= None and others = None then

I =
∫ h1

l1

∫ h2
x1

pd fx,a1,b1 pd fx,θ1

/* Template 3 */
else if h1 ̸= None and h2 ̸= None and h3 ̸= None and

others = None then
I =

∫ h1
l1

∫ h2
x1

∫ h3
x1

pd fx,a1,b1 pd fx,θ1 pd fx,θ2

/* Template 4 */
else if h1 ̸= None and h2 ̸= None and h3 ̸= None and

h4 ̸= None and others = None then
I =

∫ h1
l1

∫ h2
x1

∫ h3
x1

∫ h4
x1

pd fx,a1,b1 pd fx,θ1 pd fx,θ2 pd fx,θ3

/* Template 5 */
else if h1, . . . ,h5 ̸= None then

I =∫ h1
l1

∫ h2
x1

∫ h3
x1

∫ h4
x1

∫ h5
x1

pd fx,a1,b1 pd fx,θ1 pd fx,θ2 pd fx,θ3 pd fx,θ4

return I
end

Algorithm 3: Integral templates for arbitrary piece Pi

2.0.2 Local Maximum Probability
Having derived a probabilistic framework for computation of local min-
imum probability (Sec. 2.0.1), the computation of the local maximum
probability Pr(p = lmax) at each grid vertex p is fairly straightfor-
ward. Computation of the local maximum probability corresponds
to computing Pr([(X1 > X2) and (X1 > X3) and (X1 > X4) and (X1 >
X5)]), which is equivalent to computing Pr([(−X1 <−X2) and (−X1 <
−X3) and (−X1 < −X4) and (−X1 < −X5)]). This negation format
is equivalent to Eq. (1). Thus, we negate the intervals for random
variables X1, . . . , X5 to create new random variables X ′

1 = −X1, . . . ,
X ′

5 = −X5. We then apply our proposed local minimum probability
computation algorithm (Algorithm 1) to these new random variables
X ′

i for computing the local maximum probability in closed form.

2.0.3 Saddle Probability
Here, we provide a detailed description of the saddle point probability
computation algorithm. As explained in the main paper, we derive only
our closed-form computations and algorithm for the term t1 = Pr[(X1 <
X2) and (X1 > X3) and (X1 < X4) and (X1 > X5)] in Eq. 4 of the main
paper.

Function computeSaddleProbability()
Input: Intervals I = [[a1,b1], . . . , [a5,b5]]. Without loss of

generality, a2 < a4 and b3 < b5. So if a2 > a4 or
b3 > b5 in the original data, then we swap the two
intervals. Swapping these intervals do not change
the probability computation in Eq.2 of the main
paper.

Output: Pr(p = ls)
aalt

max = max(a1,a3,a5)

balt
min = min(b1,b2,b4)

if balt
min ≤ aalt

max then
return 0

else
/* Task1: Break the outer integral in Eq.
2 of the main paper into pieces Pi */

sortedInterestPoints = sort([aalt
max,a2,a4,b3,b5,balt

min])

idaalt
max

= Index of aalt
max in sortedInterestPoints

idbalt
min

= Index of balt
min in sortedInterestPoints

/* Task2 and Task 3: Compute piece
integrals */

saddleProbability =
computePieceIntegrals(idaalt

max
, idbalt

min
,sortedInterestPoints, I)

return saddleProbability
end

Algorithm 4: Computation of saddle probability

t1 = Pr[(X1 < X2) and (X1 > X3) and (X1 < X4) and (X1 > X5)]

=
∫ x1=balt

min

x1=aalt
max

∫ x2=b2

x2=max(x1,a2)

∫ x3=min(x1,b3)

x3=a3

∫ x4=b4

x4=max(x1,a4)

∫ x5=min(x1,b5)

x5=a5

. . .

(Pdf joint)dx,

where aalt
max = max(a1,a3,a5), balt

min = min(b1,b2,b4)
(2)

We now explain the integral limits in Eq. (2) and the piecewise
integration algorithm to compute the formula in Eq. (2), similar to
our explanations for the local minimum probability computation in
Sec. 2.0.1.

Limits aalt
max and balt

min of the outer integral in Eq. (2): First, we
identify the portion of data range of a random variable X1 (i.e., [a1,b1])
that can result in point p being a saddle. The portion [aalt

max,b
alt
min] of

outer integral in Eq. (2) indicates the data values that can result in
point p being saddle, where aalt

max denotes the maximum value among
a1,a3, and a5, balt

min denotes the minimum value among b1,b2, and b4,
and aalt

max < balt
min. The superscript alt represents alternate neighboring

random variables of a random variable X1 under consideration. The data
portion [a1,aalt

max] of random variable X1 with a1 < aalt
max will always

be smaller than either X3 or X5 depending on if aalt
max is equal to a3 or

a5, respectively. Thus, the range [a1,aalt
max] cannot result in point p as a

saddle. Similarly, the data portion [balt
min,b1] of random variable X1 with

balt
min < b1 will always be greater than either X2 or X4 depending on if

balt
min is equal to b2 or b4, respectively. Thus, the range [balt

min,b1] cannot
result in point p as a saddle. To the contrary, each point in the range
[x1 = aalt

max,x1 = balt
min] has a nonzero probability of simultaneously

being smaller than the random variables X2 and X4 and greater than the
random variables X3 and X5, and therefore, represents a valid range for
point p being a saddle.

Limits max(x1,ai) and min(x1,bi) of the inner integrals in
Eq. (2): Inner integrals in Eq. (2) integrate the joint distribution
Pdf joint over its support where random variables X2 and X4 are si-
multaneously greater and X3 and X5 are simultaneously smaller than
x1 ∈ [aalt

max,b
alt
min] in the outer integral. The inner integral lower limit



Function computePieceIntegrals()
Input: idaalt

max
, idbalt

min
,sortedInterestPoints, I

Output: Sum of integrals over pieces Pi

/* Task2: Compute integral for piece P1 */
/* Lower (l) and upper (h) limits of piece P1
*/

l = sortedInterestPoints[idaalt
max

]

h = sortedInterestPoints[idaalt
max

+1]
totalIntegral = 0
/* Initialize the limits of inner integrals
for piece P1 assuming a2,a4 starting after
aalt

max and a3,a5 are starting before aalt
max */

tempd3 = a3
tempd5 = a5
tempu2 = None
tempu4 = None
/* Update the initialized limits depending on
which of interest points a2,a4,b3,b5 lie
before aalt

max. */
for k = 1 to (idaalt

max
−1) do

if sortedInterestPoints[k] == a2 then
tempu2 = I[2][2] ; // i.e., b2

if sortedInterestPoints[k] == a4 then
tempu4 = I[4][2] ; // i.e., b4

if sortedInterestPoints[k] == b3) then
tempd3 = None

if sortedInterestPoints[k] == b5) then
tempd5 = None

end
IP1 = integralTemplate(l,h, l3 = tempd3, l5 =

tempd5,h2 = tempu2,h4 = tempu4, I)
totalIntegral+= IP1

/* Task3: Compute integral for successive
pieces */

for k = (idaalt
max

+1) to (idbalt
min
)) do

/* Determine piece limits */
l = sortedInterestPoints[k]
h = sortedInterestPoints[k+1]
/* Update the lower or upper limit for
each new interest point */

if sortedInterestPoints[k] == a2 then
tempu2 = I[2][2] ; // i.e., b2

if sortedInterestPoints[k] == a4 then
tempu4 = I[4][2] ; // i.e., b4

if sortedInterestPoints[k] == b3) then
tempd3 = None

if sortedInterestPoints[k] == b5) then
tempd5 = None

IPnext = integralTemplate(l,h, l3 = tempd3, l5 =
tempd5,h2 = tempu2,h4 = tempu4, I)
totalIntegral+= IPnext

end
return totalIntegral

end
Algorithm 5: Computation of integral for piece P1 and succes-
sive pieces Pnext

corresponds to max(x1,ai) for i ∈ {2,4} and upper limit corresponds
to min(x1,bi) for i ∈ {3,5}. These integral limits are derived using a
reasoning similar as in the case of local minimum probability described
Sec. 2.0.1. The maximum or minimum is taken because the support of
random variable Xi is restricted to [ai,bi]. In particular, for x1 < ai in
inner integral with i ∈ {2,4}, the support [ai,bi] will always be greater
than x1 and the inner integral does not depend on the value of x1. Simi-
larly, for x1 > bi in any inner integral with i ∈ {3,5}, the support [ai,bi]
will always be smaller than x1, and the inner integral does not depend
on the value of x1. In contrast, when x1 assumes values in the support

Function integralTemplates()
Input: Integral limits

l,h, l3 = None, l5 = None,h2 = None,h4 = None
Output: Integral over piece [l,h]
/* Template 1 */
if l3 ̸= None and others = None then

I =
∫ h

l
∫ x1

l3
pd fx,a1,b1 pd fx,a3,b3

/* Template 2 */
else if l5 ̸= None and others = None then

I =
∫ h

l
∫ x1

l5
pd fx,a1,b1 pd fx,a5,b5

/* Template 3 */
else if h2 ̸= None and others = None then

I =
∫ h

l
∫ h2

x1
pd fx,a1,b1 pd fx,a2,b2

/* Template 4 */
else if h4 ̸= None and others = None then

I =
∫ h

l
∫ h4

x1
pd fx,a1,b1 pd fx,a4,b4

/* Template 5 */
else if l3 ̸= None and l5 ̸= None and others = None then

I =
∫ h

l
∫ x1

l3

∫ x1
l5

pd fx,a1,b1 pd fx,a3,b3 pd fx,a5,b5

/* Template 6 */
else if l3 ̸= None and h2 ̸= None and others = None then

I =
∫ h

l
∫ x1

l3

∫ h2
x1

pd fx,a1,b1 pd fx,a3,b3 pd fx,a2,b2

/* Template 7 */
else if l3 ̸= None and h4 ̸= None and others = None then

I =
∫ h

l
∫ x1

l3

∫ h4
x1

pd fx,a1,b1 pd fx,a3,b3 pd fx,a4,b4

/* Template 8 */
else if l5 ̸= None and h2 ̸= None and others = None then

I =
∫ h

l
∫ x1

l5

∫ h2
x1

pd fx,a1,b1 pd fx,a5,b5 pd fx,a2,b2

/* Template 9 */
else if l5 ̸= None and h4 ̸= None and others = None then

I =
∫ h

l
∫ x1

l5

∫ h4
x1

pd fx,a1,b1 pd fx,a5,b5 pd fx,a4,b4

/* Template 10 */
else if h2 ̸= None and h4 ̸= None and others = None then

I =
∫ h

l
∫ h2

x1

∫ h4
x1

pd fx,a1,b1 pd fx,a2,b2 pd fx,a4,b4

/* Template 11 */
else if l3 ̸= None and l5 ̸= None and h2 ̸= None and

h4 = None then
I =∫ h

l
∫ x1

l3

∫ x1
l5

∫ h2
x1

pd fx,a1,b1 pd fx,a3,b3 pd fx,a5,b5 pd fx,a2,b2

/* Template 12 */
else if l3 ̸= None and l5 ̸= None and h4 ̸= None and

h2 = None then
I =∫ h

l
∫ x1

l3

∫ x1
l5

∫ h4
x1

pd fx,a1,b1 pd fx,a3,b3 pd fx,a5,b5 pd fx,a4,b4

/* Template 13 */
else if l3 ̸= None and h2 ̸= None and h4 ̸= None and

l5 = None then
I =∫ h

l
∫ x1

l3

∫ h2
x1

∫ h4
x1

pd fx,a1,b1 pd fx,a3,b3 pd fx,a2,b2 pd fx,a4,b4

/* Template 14 */
else if l5 ̸= None and h2 ̸= None and h4 ̸= None and

l3 = None then
I =∫ h

l
∫ x1

l5

∫ h2
x1

∫ h4
x1

pd fx,a1,b1 pd fx,a5,b5 pd fx,a2,b2 pd fx,a4,b4

/* Template 15 */
else if l3 ̸= None and l5 ̸= None and h2 ̸= None and

h4 ̸= None then
I =

∫ h
l
∫ x1

l3

∫ x1
l5

∫ h2
x1

∫ h4
x1

pd fx,a1,b1 pd fx,a3,b3

pdfx,a5,b5 pd fx,a2,b2 pd fx,a4,b4
return I

end
Algorithm 6: Integral templates for arbitrary piece Pi

of a distribution, the inner integral then depends on x1. It can also be
verified that the lower limit of any inner integral does not exceed the



upper limit of their respective integral. For example, a3 ≤ min(x1,b3)
in all cases because our initial assumption is a3 < b3 for the random
variable X3 (see the Background and Problem Setting section of the
main paper). Also, x1 in the outer integral of Eq. (2) attains values in the
range [aalt

max = max(a1,a3,a5),balt
min = min(b1,b2,b4)] (see the previous

paragraph). Since the minimum value x1 is equal to max(a1,a3,a5),
x1 ≥ a3 is guaranteed. Thus, a3 ≤ min(x1,b3) is true in all cases. A
similar reasoning is applicable to the other inner integrals too.

Piecewise simplification of Eq. (2): The saddle probability again
needs to be computed in a piecewise manner for reasons similar to the
case of local minimum probability computation described in Sec. 2.0.1.
Essentially, at each start point ai with i ∈ {2,4} in Eq. (2), the value
of max(x1,ai) changes, which simplifies the integral computation dif-
ferently. Similarly, for each end point bi with i ∈ {3,5} in Eq. (2), the
value of min(x1,bi) changes, which simplifies the integral computation
differently. The simplified formula of a piecewise integral, therefore,
depends on the ordering of the points a2,a4,b3, and b5 with respect to
the limits of the outer integral in Eq. (2), i.e., aalt

max and balt
min.

Fig. 3: Illustration of saddle probability computation. (a) Pieces are
determined as a part of Task 1. Here, pieces are P1 = [aalt

max = a1,a4], P2 =
[a4,b3], P3 = [b3,a2], and P4 = [a2,balt

min = b2]. (b) The saddle probability is
computed by computing integral for the first piece P1 (Task 2) followed by
integrals for successive pieces Pnext (Task 3) and summing all piecewise
integrals.

Algorithm for computing saddle probability: The computation
of the formula in Eq. (2) depends on the ordering of points a2,a4,b3,
and b5 with respect to the limits of the outer integral in Eq. (2), i.e.,
aalt

max and balt
min. Because of these six quantities, there are again 6! = 720

permutations similar to the local minimum probability case. We, there-
fore, devise an efficient algorithm that can compute the integral in
Eq. (2) without needing to go through all permutations. Our algorithm
matches closely with the one for the local minimum probability com-
putation. Our algorithm computes the simplified integrals per piece Pi
on the fly depending on the observed permutation of points a2,a4,b3,
b5, aalt

max = max(a1,a3,a5), and balt
min = min(b1,b2,b4). If balt

min ≤ aalt
max,

the saddle probability is 0. If aalt
max < balt

min, we divide our algorithm
into three tasks. In Task 1, we determine the pieces Pi of the outer
integral in Eq. (2) for performing piecewise integration (see Task 1 in
Algorithm 4). For that, we sort the intervals based on the ordering of
a2,a4,b3, b5, aalt

max = max(a1,a3,a5), and balt
min = min(b1,b2,b4). This

operation is similar to the Isorted array computation in the case of local
minimum probability computation in Algorithm 1. We then find the
indices of aalt

max and balt
min in the sorted intervals and points in between,

which determine the pieces Pi.
In Task 2, we compute the integration for the first piece P1 depend-

ing on which points in a2,a4,b3, and b4 are starting before or after
aalt

max. The algorithm for integration for the first piece P1 is presented in
Algorithm 5 as Task 2 (similar to the Task 2 in the case of local mini-
mum probability computation in Algorithm 2). Finally, we compute
the integration for successive pieces (denoted as IPnext in Algorithm 5)
depending on the order of points a2,a4,b3, and b4 observed between
aalt

max and balt
min, which is similar to the Task 3 in Algorithm 2 for the

local minimum probability computation. Again, we derive the integral
templates (i.e., simplifications) similar to those in the case of local
minimum probability computation, which are detailed in Algorithm 6.

Fig. 4: Quantitative proof of correctness of our proposed closed-form
computations and performance results. The RMSE between our closed-
form/semianalytical solutions and the MC solution (image a) drops with
the increase in the number of MC samples, which confirms the correct-
ness of our algorithms. As depicted in images b-e, the closed-form
computation (dotted line) provides significantly high performance com-
pared to the MC sampling (solid curves). The closed-form histogram
computation time exponentially grows with an increase in the number of
bins, but the semianalytical solution time stays about constant (image f)
for 1000 MC samples.

These integration templates compute the integral for each piece on the
fly based on the observed piece limits.

Illustration of saddle probability computation: We illustrate the
three tasks comprising the saddle probability computation in Fig. 3.
For the example shown in Fig. 3, a5 < b5 < a3 < a1 < a4 < b3 < a2 <
b2 < b1 < b4. The Task 1 includes determining the portion of random
variable X1 that can result in point p being a saddle and determining
pieces for integration. As observed in Fig. 3a, each point outside the
range [x1 = aalt

max,x1 = balt
min] has a zero probability of being a saddle.

For example, in Fig. 3a, the range [x1 = balt
min,b1] (i.e., [b2,b1] shown in

brown) has a zero probability of being smaller than the random variable
X2, which violets the condition of a saddle in Eq. (2). Thus, only the
data range [x1 = aalt

max,x1 = balt
min] can result in point p being a saddle.

We then determine pieces of integration. For the example illustrated
in Fig. 3a, the ordering of points of interest (points involved in the
integration limits of Eq. (2)) that determines the piece limits is b5 <
aalt

max = a1 < a4 < b3 < a2 < balt
min = b2. Thus, there are four pieces

P1 = [aalt
max = a1,a4],P2 = [a4,b3],P3 = [b3,a2],P4 = [a2,balt

min = b2],
depicted by four colors in Fig. 3a. The piecewise integration process is
again similar to the local minimum probability computation described
in Sec. 2.0.1.

In Task 2, we compute the integration formula for piece P1 = [a1,a4]
denoted by a blue range in Fig. 3a. We determine how many intervals
are overlapping with the piece P1 to compute integration over piece P1,
i.e., IP1 . The process of finding which intervals are overlapping with the
piece P1 is similar to the one in the case of local minimum probability
computation (the only difference is that the points of interest in the
case of local minimum probability computation are a1, . . . , a5 and
bmin). Since b5 < (aalt

max = a1) and a4,a2 > a1 in Fig. 3a, the intervals
of random variables X5, X4, and X2 do not overlap with the piece P1.



Fig. 5: Qualitative proof of correctness of our proposed closed-form computations (column c) for the Epanechnikov (top row) and Histogram models
(bottom row) using the MC sampling approach (columns a and b) as the baseline. The solution obtained with 2000 MC samples converges to our
closed-form computations (see the difference image in column d), thereby confirming the correctness of our methods and implementation. Our
method increases the speed for both Epanechnikov and histogram with 2 bins. Note that the closed-form histogram computation, although accurate,
exponentially grows with an increase in the number of bins.

Only the interval for random variable X3, i.e., [a3,b3] overlaps with the
piece P1. Thus, the core integration formula in Eq. (2) simplifies to a
double integral over the marginal joint distribution of random variables
X1 and X3, as shown with the formula for IP1 in Fig. 3b.

In Task 3, the integration is computed for successive pieces. In
particular, for the pieces P2 (green), P3 (orange), and P4 (magenta) in
Fig. 3a, the integral updates based on if a new piece results from a
new start point (i.e, ai with i ∈ {2,4}) or end of an interval (i.e, bi with
i ∈ {3,5}). For example, for the piece P2, the start point a4 causes the
interval for random variable X4, i.e., [a4,b4] to overlap with the piece
P2 in addition to the interval for random X3, i.e., [a3,b3]. Thus, the
core integration formula in Eq. (2) simplifies to a triple integral over
the marginal joint distribution of random variables X1, X3, and X4, as
shown with the formula for IP2 in Fig. 3b. On the contrary, the end point
b3 terminates the overlap of the interval [a3,b3] with the piece P3. Thus,
the core integration formula in Eq. (2) simplifies to a double integral
over the marginal joint distribution of random variables X1 and X4, as
shown with the formula for IP3 in Fig. 3b. The integration formula for
the piece P4 updates in a similar manner because of a new start point
a2.

3 VALIDATION AND PERFORMANCE OF THE PROPOSED ALGO-
RITHMS

We show the quantitative results for the uniform, Epanechnikov, and
histogram noise models and qualitative results for Epanechnikov and
histogram noise models (similar to Fig. 6 in the main paper for the
uniform noise) for the local minimum probability computations on
the Ackley dataset [1] used in the main paper. Figure 4 shows the
quantitative comparison of MC sampling solution and our closed-form
computations using the proposed algorithms. For all uniform, Epanech-
nikov, and histogram (closed-form and semianalytical) noise models,
the root mean squared error (RMSE) between the MC and closed-form

solution drops as the number of MC samples is increased, as observed in
Fig. 4a. This convergence confirms the correctness of our closed-form
computations and algorithms. In Fig. 4a, the semianalytical (purple
curve) solution has a lower RMSE than the histogram with MC sam-
pling (green curve) for all neighbors per grid point, thereby showing the
higher accuracy of our semianalytical approach. Further, as seen from
Fig. 4b-e, the closed-form solutions provide the highest performance
(dotted line) compared to the MC method (solid curves). As observed
in Fig. 4f, the closed-form histogram computation time exponentially
grows with an increase in the number of bins, as described in the
main paper. The semianalytical histogram solution (the purple curve in
Fig. 4f), however, takes an about constant amount of time for a fixed
number of MC samples because it does not depend on the bin count
(see the main paper for details). Figure 5 visualizes the qualitative
results similar to the Fig. 6 of the main paper, but for the Epanechnikov
and histogram noise models. It shows that the MC solution converges
to our closed-form solution as we increase the number of samples from
100 (Fig. 5a) to 2000 (Fig. 5b). This qualitative convergence can be
seen through the difference image in Fig. 5d that exhibits negligible
maximum error (Errormax) and RMSE between Fig. 5c and Fig. 5b.

4 QUANTITATIVE EVALUATION FOR THE CLIMATE DATA

In Fig. 6, we present a quantitative evaluation for the climate data [4]
used in the main paper. First, we computed the difference D between
the number of critical points of the decompressed and original field
as a function of probability threshold. In particular, at probability
threshold t, we consider all critical points of decompressed data that
have probability greater than t. Thus, for t = 0, all critical points
of a decompressed field are considered. However, as we increase t,
critical points with probability smaller than t get filtered out. For a
probability threshold t = 0, the difference D is high, as all critical
points of decompressed field are considered (which contain several



Fig. 6: Quantitative evaluation of the climate data. (a) Difference (D) between the critical point count of original and decompressed fields plotted
as a function of a probability threshold (t). In particular, for a threshold t, all critical points with probability smaller than t are removed in the
decompressed field. At threshold t = 0.24, the number of critical points of the original and decompressed fields is nearly same. (b) Critical points of
the original field. (c) Critical points of the decompressed data without applying filtering (t = 0). (d) Critical points of the decompressed data filtered by
probability threshold of t = 0.24. The filtered critical points in (d) exhibit lower error (RMSE = 0.86) with respect to the nonfiltered critical points in (c)
(RMSE = 0.101) with the original field in (a) as the reference, which is illustrative of the utility of probabilistic methods in identifying robust critical
points.

new critical points from compression errors). As we start increasing
the threshold, the difference D drops and reaches the minimum at a
probability threshold t = 0.24, as observed in Fig. 6a. For probability
threshold t > 0.24, the difference D again increases because the number
of thresholded critical points in the decompressed field become smaller
than the number of critical points in the original field. Thus, at D= 0.24,
both the original and decompressed fields have about the same number
of critical points.

We compute the root mean squared error (RMSE) to quantitatively
evaluate probabilistic results. We consider the decompressed data with-
out critical point filtering (t = 0) in Fig. 6c and with critical point
filtering (t = 0.24) in Fig. 6d for evaluation. Initially, we assign 1 to
each position in the original field where the critical point appears and
0 everywhere else to create a binary field. We generate similar binary
fields denoting critical point positions for thresholds t = 0 (decom-
pressed data with all critical points) and t = 0.24 (decompressed data
with critical points that have probability greater than t = 0.24). We
then compute the RMSE between these binary image representations.
The RMSE for nonfiltered critical points in Fig. 6c with respect to
original data critical points is 0.101. This RMSE drops to 0.86 as we
filter critical points based on probability in Fig. 6d, which indicates
that removing low-probability critical points from decompressed data
provides answer closer to the true critical points in the original field,
thereby presenting the utility of probability computations for critical
points.

Fig. 7: Performance and accuracy results of our VTK-m implementation
on the AMD GPU. (a) The performance reduces with an increase in the
number of MC samples. (b) The RMSE between the MC solution and
solution of our algorithms reduces with an increase in the number of
MC samples, thereby confirming the correctness of our algorithms and
parallel implementation.

The performance and accuracy results for the climate dataset using
our VTK-m parallel implementation on the AMD GPU are shown in
Fig. 7. The AMD GPU resource is courtesy of Oak Ridge National

Laboratory’s Frontier supercomputer [3]. The performance of the
MC solutions decreases with an increase in the number of samples,
as observed from Fig. 7a. The decrease in RMSE between the MC
solution and our closed-form solution with an increase in the number
of MC samples, as observed in Fig. 7b, confirms the correctness of our
algorithms.

5 INTEGRATION OF VTK-M CODE WITH PARAVIEW

One of the main benefits offered by VTK-m [5] includes its easy integra-
tion with ParaView using a plugin approach, thereby making VTK-m
filters accessible to a broader community. Figure 1 visualizes the inte-
gration of our VTK-m critical point uncertainty code with ParaView.
The ParaView plugin is generated by wrapping a VTK-m class inside
VTK class, which can then be integrated in ParaView. Using GPU as
a backend, reliable uncertainty visualizations can be generated using
the proposed nonparametric models (i.e., histograms) in near-real-time
within ParaView. We provide a small video demonstration as another
supplement to show the usage of our VTK-m critical point uncertainty
filter inside ParaView.
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