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ABSTRACT

Functional depth is a well-known technique used to derive descrip-
tive statistics (e.g., median, quartiles, and outliers) for 1D data.
Surface boxplots extend this concept to ensembles of images, help-
ing scientists and users identify representative and outlier images.
However, the computational time for surface boxplots increases cu-
bically with the number of ensemble members, making it impracti-
cal for integration into visualization tools. In this paper, we propose
a deep-learning solution for efficient depth prediction and computa-
tion of surface boxplots for time-varying ensemble data. Our deep
learning framework accurately predicts member depths in a surface
boxplot, achieving average speedups of 6X on a CPU and 15X on a
GPU for the 2D Red Sea dataset with 50 ensemble members com-
pared to the traditional depth computation algorithm. Our approach
achieves at least a 99% level of rank preservation, with order flip-
ping occurring only at pairs with extremely similar depth values
that pose no statistical differences. This local flipping does not sig-
nificantly impact the overall depth order of the ensemble members.

Index Terms: Deep learning, uncertainty visualization, surface
boxplot

1 INTRODUCTION

Ensemble simulations, performed in various scientific domains,
including hydrodynamics, nuclear science, and climate science,
capture the effect of uncertainty in simulation parameters on ac-
tual simulations. However, ensemble simulations pose the non-
trivial challenge of effectively and efficiently visualizing uncer-
tainty across ensemble members. Over the past few years, various
uncertainty visualization techniques (e.g., probabilistic marching
cubes [19], contour boxplot [29], surface boxplots [8]) have been
developed to summarize and convey important ensemble members
to users. A comprehensive overview of ensemble visualization
techniques can be found in the survey paper by Wang et al. [27].
In this work, we present an approach using neural networks for
computing surface boxplots of time-varying two-dimensional (2D)
ensemble data.

The surface boxplots algorithm [8] is an uncertainty visualiza-
tion method proposed by Genton et al. for generating visual sum-
maries of an ensemble of 2D datasets. The algorithm extends the
concept of Tukey’s boxplots [25] for 1D data to 2D/3D images, de-
riving ensemble descriptors (e.g., median member and outlier mem-
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bers) through statistical analysis of the ensemble (Sec. 2.1). In par-
ticular, surface boxplots utilize the notion of functional depth [24]
to rank ensemble members. Each ensemble member is assigned a
rank based on the level of centrality or depth with respect to other
ensemble members (Sec. 2.1). However, the cost of computing
functional depth increases cubically with the number of ensemble
members, making it impractical to implement in visualization tools,
especially for time-varying datasets.

In this paper, we present an approach that leverages neural net-
works to learn the computation of surface boxplots using a subset
of time steps from time-varying ensemble data. The trained model
is then used to predict the depth order for the remaining time steps.
We demonstrate that our method can accurately learn the depth cal-
culation by evaluating the trained model with untrained data from
the same simulation models. Our proposed deep learning method
provides depth order results that closely match the ground truth and
accurately predict median members, which are crucial information
from surface boxplots. Additionally, we compare the performance
of our method with the traditional surface boxplots computation
method to highlight the efficiency and benefits of our approach. Our
approach is up to 6 times faster than the original depth computation
algorithm with parallel computation using a CPU inference and 15
times faster using a GPU for the larger Red Sea dataset [30] with
50 ensemble members. This paper contributes to the field by pro-
viding an alternative method for functional depth computation in
time-varying datasets, making it feasible for integration into visu-
alization tools.

2 RELATED WORK AND BACKGROUND

2.1 Surface Boxplots for Ensembles
The surface boxplots approach was introduced by Genton et al. [8]
for visualization and exploratory analysis of samples of images.
This method allows users to detect the most representative sample
surface or image and identify potential outlying images, which of-
ten contain interesting features not present in most of the images. In
their method, they used the notion of volume depth to order the im-
ages viewed as surfaces. The member with the highest data depth
is considered the most central or median, and other members are
ranked outwards from the median based on ordered data depths.
We briefly describe the process of computing a surface boxplot for
an ensemble dataset, as demonstrated by Genton et al. [8], and in-
troduce the notation used in our paper in supplemental material.

Calculating the modified volume depth (MVD) for an ensem-
ble with n members involves three nested loops: iterating over
each member, each grid, and each combination from C(n − 1, j)
selecting j members from n−1. The band depth (BD) or modified
band depth (MBD) requires constructing all possible bands, with
the computational cost increasing at a rate of

(n
j
)

for 2 ≤ j ≤ n.
This process becomes time-consuming as the number of ensemble
members and the value of j increase.

2.2 Deep Learning for Visualization
Advances have been made in using machine learning (ML) and
deep learning methods for data visualization [5, 10]. Several inno-
vative approaches use deep neural networks for efficient exploration
of simulation parameter space via visualization [13, 22], efficient
isosurface extraction guided by the uncertainty of implicit neural
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representation [16], and uncertainty analysis for super-resolution
applications [21]. Han et al. [11] recently proposed the utilization
of deep learning models to circumvent costs of expensive Monte
Carlo sampling and efficiently predict level-set uncertainty in time-
varying ensemble data. Motivated by their approach, we propose
the utilization of deep learning models for efficient and reliable data
depth prediction for the time-varying ensemble data.

2.3 Uncertainty Visualization
The area of uncertainty visualization has been rapidly evolving over
the past couple of decades since data cannot be trusted without un-
derstanding of uncertainty. Various survey reports [7, 20, 6, 14]
have documented state-of-the-art in uncertainty visualization. Vi-
sualizing variations in level-sets [19, 3], direct volume render-
ing [18, 1], topological features (e.g., critical points [17, 9] and
Morse complexes [2]) are a few well-studied methods for analyzing
uncertainty across ensemble members. Visualization of uncertainty,
however, can lead to cost and memory overhead, which can become
a bottleneck in visualization tools and applications. A few recent
works proposed novel methods to alleviate cost of uncertainty visu-
alization [11, 28, 4, 15]. In our work, we propose to alleviate cost
of computing surface boxplots by using a deep learning approach.

3 DEPTH PREDICTION MODEL FOR TIME-VARYING ENSEM-
BLE DATASETS

3.1 Training Data Generation
In our method, for a particular time-varying ensemble datasets, we
first normalized the datasets with the range of data values across the
entire time-varying ensemble dataset. Then we generated the train-
ing data by randomly selecting T time steps from the time-varying
ensemble datasets. Let E = {S1,S2, . . . ,Sn} denote an ensemble of
n 2D datasets for each time step. For each member at a given time
step, we calculate the depth of data at each grid point using the sur-
face boxplot algorithm described in Section 2.1. Thus, a training
sample represents a single grid point of one ensemble member at a
given time step, along with the depth for this grid point, resulting
in a one-dimensional (1D) vector of size n+1.

Figure 1 provides a simple example of our training samples.
In this example, there are 3 members, {S1,S2,S3}, at each time
step. Here, v1(0,0) ,v2(0,0) , and v3(0,0) represent the data values for each
member at grid point (0,0). Similarly, P1(0,0) ,P2(0,0) , and P3(0,0) are
the corresponding depth values for each member at grid point (0,0).
Each training sample includes the data values followed by the depth
value. Notably, the data values for a specific member are moved to
the last position before the depth value in each training sample. For
example, in S2 from Figure 1, the data value of v2(0,0) is moved to
the last position before the depth value.

Figure 1: Illustration of training data samples. The figure shows three
ensemble members ({Si} where 1≤ i≤ 3) at a single time step. Here,
vi(x,y) denotes the data value of ensemble member i at grid (x,y). Each
sample includes the data values from the ensemble members along
with the depth (Pi(x,y) ), which is used for loss computation during the
training process.

3.2 Neural Network
We adapt the network architecture proposed by Han et al. [11, 12],
which consists of a latent encoder E and a latent decoder D, both
constructed with multilayer perceptrons (MLP), specifically a series
of fully connected (FC) layers (Figure 2).

The data values from ensembles, referred to as ensemble data,
serve as the input for the encoder, which comprises a series of FC
layers. The dimension of the input corresponds to the number of
ensembles n. The encoded latent vectors are subsequently fed into
another series of FC layers for decoding to the depth. The sinu-
soidal activation function, as demonstrated by Sitzmann et al. [23],
has proven to be more accurate and faster. Thus, we adopted the si-
nusoidal activation function after each FC layer, except for the last
layer of the latent decoder D. To ensure the output values remain
within the [0, 1] range, we applied the Sigmoid activation function
before the output layer.

Figure 2: Illustration of network architecture. The network in our
method is constructed using multilayer perceptrons (MLP) with a si-
nusoidal activation function. A sigmoid activation function is applied
in the final layer to ensure the output is between [0,1]. It takes the
data values from the ensemble members and the target depth p as
inputs, and outputs the predicted depth (p̂). The data values are used
to predict the depth p̂, while the target depth p is used to compute
the loss.

4 EXPERIMENTS AND RESULTS

In this section, we evaluated the network performance (Sec. 4.2)
and compared our proposed deep learning-based approach with
the original surface boxplots computation algorithm [8] (Sec. 4.3).
We demonstrated that our proposed method is both accurate and
efficient by analyzing time-varying ensemble datasets from the
IRI/LDEO Climate Data Library1 and the Red Sea simulations per-
formed at the KAUST Supercomputing Lab2 (Sec. 4.1). We used
j = 2 for computing depth in generating the training data. The mod-
els were trained on dual RTX 3090 GPUs and evaluated on a desk-
top equipped with an Intel(R) Xeon(R) E5-2640 CPU (40 cores,
128GB memory) and one NVIDIA Titan RTX GPU.

4.1 Data Sets
The Wind dataset is from the ECMWF Sub-seasonal to Seasonal
(S2S) Prediction Project [26]. The pressure level wind dataset, ob-
tained using the NECP ensemble forecast system, forms an ensem-
ble with 15 members. We used the U Component Wind ensemble
at a pressure level of 200 HPA, with data from January 1, 2015, and
a forecast period of 45 days. The spatial domain covers from 0◦E to
1.5◦W in longitude and from 90◦N to 90◦S in latitude, with a grid
size of [240×121]. The Red Sea dataset [30] comprises ensemble

1http://iridl.ldeo.columbia.edu/
2https://kaust-vislab.github.io/SciVis2020/
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simulations of variables relevant to oceanography, such as velocity
and temperature. These simulations were performed over a domain
with a spatial resolution of 500× 500× 50 for 60 time steps. For
our experiment, we analyzed the depth order of temperature across
50 ensemble members corresponding to the ocean surface (the top
2D data slice).

Datasets #Time Steps #Training Samples Training (hr) Model Size (MB)
Wind 10 4.36M 1.28 55.25

Red Sea 30 54M 11.20 55.25

Table 1: Training time and model size for the **Wind** and **Red
Sea** datasets. #TimeSteps indicates the number of time steps used
for training. #TrainingSamples represents the number of training sam-
ples. We observed that the training time is linearly proportional to
the number of training samples. Storing a model configured with 4
encoder layers, 6 decoder layers, and a latent vector dimension of
2048 requires 55.25 MB.
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Figure 3: Violin plots of absolute errors between the depth pre-
dicted by the neural network and the ground truth. The errors are
computed per grid. Increasing the number of time steps used for
training reduces these errors. For the Wind dataset, using 10 time
steps significantly improves the network’s performance. For the Red
Sea dataset, 30 time steps yield the best accuracy. More complex
datasets with more ensemble members, such as the Red Sea, re-
quire more extensive training to achieve optimal performance.

4.2 Model Performance
4.2.1 Training Performance and Model Size
To benchmark the training performance, we randomly selected 10
time steps to generate the training datasets for the Wind datasets
and 30 time steps for the Red Sea datasets, as it has three times
more ensemble members. We evaluated our study using the re-
maining data. We trained the model for 100 epochs. The number of
training samples, training time, and the size of the model for each
dataset are shown in Table 1. From the results, we observe that
the training time is linear to the number of training samples. The
trained model needs 55.25 MB of storage with 4 encoder layers, 6
decoder layers, and a 2048-dimensional latent vector.

4.2.2 Prediction Accuracy
To evaluate the impact of the number of training samples on the
performance of our model quantitatively, we increased the number
of time steps used in the training process and recorded the absolute
errors compared to the ground truth depth per grid point for each

#Time Step Depth Order Level of Rank Preservation

#8 GT [13, 14, 2, 1, 12, 5, 6, 9, 11, 8, 3, 7, 10, 4, 0] 100%Pred [13, 14, 2, 1, 12, 5, 6, 9, 11, 8, 3, 7, 10, 4, 0]

#9 GT [14, 13, 2, 6, 8, 12, 5, 1, 9, 7 , 11, 3, 10, 0, 4] 99.04%
Pred [14, 13, 2, 6, 8, 12, 5, 1, 7, 9 , 11, 3, 10, 0, 4]

#11 GT [14, 2, 6, 1, 8, 9, 13, 3, 5, 11, 10, 12, 4, 7, 0] 100%Pred [14, 2, 6, 1, 8, 9, 13, 3, 5, 11, 10, 12, 4, 7, 0]

#19 GT [1, 12, 9, 3, 11, 8, 2, 7, 4, 10, 5, 13, 6, 14, 0] 100%Pred [1, 12, 9, 3, 11, 8, 2, 7, 4, 10, 5, 13, 6, 14, 0]

#21 GT [2, 3, 12, 9, 7, 1, 0, 13, 14, 10, 8, 11, 5, 4, 6] 100%Pred [2, 3, 12, 9, 7, 1, 0, 13, 14, 10, 8, 11, 5, 4, 6]

#26 GT [2, 12, 9, 1, 3, 8, 14, 0, 6, 7, 10, 11, 13, 4, 5] 100%Pred [2, 12, 9, 1, 3, 8, 14, 0, 6, 7, 10, 11, 13, 4, 5]

#30 GT [2, 12, 1, 14, 6, 8, 3, 10, 7, 9, 5, 0, 11, 13, 4] 100%Pred [2, 12, 1, 14, 6, 8, 3, 10, 7, 9, 5, 0, 11, 13, 4]

#31 GT [12, 1, 11, 2, 6, 0, 14, 7, 5, 9, 10, 3, 8, 13, 4] 100%Pred [12, 1, 11, 2, 6, 0, 14, 7, 5, 9, 10, 3, 8, 13, 4]

#40 GT [7, 11, 6, 2, 4, 10, 3, 12, 9, 14, 5, 1, 0, 8, 13] 100%Pred [7, 11, 6, 2, 4, 10, 3, 12, 9, 14, 5, 1, 0, 8, 13]

#41 GT [7, 6, 10, 4, 11 , 9, 2, 12, 14, 3, 8, 1, 5, 13, 0] 99.04%
Pred [7, 6, 10, 11, 4 , 9, 2, 12, 14, 3, 8, 1, 5, 13, 0]

Table 2: Comparison of neural network predicted (Pred) depth order
to the ground truth (GT) shows the depth order increasing from left
to right. The rank preservation level indicates the inversion ratio of
Pred to GT, with incorrect predictions highlighted in orange. The neu-
ral network, trained on 10 time steps, accurately predicts the depth
order for most time steps in the Wind dataset and correctly predicts
the median ensemble member. Occasional order flips occur when
depths are very similar. For example, in time step #9, the depths of
ensemble members #9 and #7 are 0.3389126 and 0.33892963, dif-
fering by about 0.000017. Local shuffles from prediction inaccuracies
do not significantly affect the overall ranking, as shown by the rank
preservation level in the rightmost column.

ensemble member (Figure 3). We randomly selected 5, 10, and 15
time steps for the Wind dataset and 10, 20, and 30 time steps for
the Red Sea dataset.

As observed from Figure 3, the results depicted in the violin plots
indicate that training with 10 time steps significantly reduces errors
compared to training with 5 time steps for the Wind dataset. Addi-
tionally, using more than 10 time steps does not provide substantial
improvements, suggesting that 10 time steps may be sufficient for
this dataset. For the Red Sea dataset, the errors decrease signifi-
cantly when increasing the number of time steps from 20 to 30, with
30 time steps providing the best results. This indicates a stronger
dependency on a larger number of time steps for accurate modeling
in the Red Sea dataset compared to the Wind dataset, likely due
to the Red Sea dataset having more than three times the number of
ensemble members and about eight times larger in resolution.

These findings from Figure 3 underscore the importance of
selecting an adequate number of training samples for different
datasets. While the Wind dataset achieves satisfactory performance
with a relatively smaller number of time steps, the Red Sea dataset
benefits significantly from a larger number of time steps. The re-
sults suggest that datasets with greater complexity and more en-
semble members, like the Red Sea, require more extensive training
to achieve optimal performance. Conversely, simpler datasets with
fewer ensemble members, such as the Wind dataset, can reach sat-
isfactory performance with fewer time steps.

Tables 2 and 3 show the computed depth order using the trained
neural network compared to the ground truth. In our experiments,
we denote the ground truth depth order as the natural order and
count the inversions3 in the predicted depth order. We then use the
number of inversions divided by the total number of inversions of
the depth order to indicate the level of rank preservation, where a
ratio of 100% indicates an exact accurate prediction. Based on our
findings in Figure 3, we used 10 time steps for training the network
for the Wind dataset and 30 time steps for the Red Sea dataset.

For the Wind dataset, the trained neural network can compute
the depth order exactly accurately to the ground truth for most time
steps, achieving at least a 0.9904 level of rank preservation with

3https://en.wikipedia.org/wiki/Inversion_(discrete_

mathematics)
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#Time Step Depth Order Level of Rank Preservation

#3 GT [35, 9, 5, 39, 24, 29, 20, 34, 44, 22, 14, 4, 31, 42, 18, 49, 1, 33, 7, 45, 46, 16, 28, 19, 6, 48 , 13, 43, 21, 37, 2, 47, 25, 0, 8, 40, 15, 30, 10, 11, 36, 32, 26, 27, 17 , 12, 3, 38, 41, 23] 99.84%
Pred [35, 9, 5, 39, 24, 29, 20, 34, 44, 22, 14, 4, 31, 42, 18, 49, 1, 33, 7, 45, 46, 16, 28, 19, 48, 6 , 13, 43, 21, 37, 2, 47, 25, 0, 8, 40, 15, 30, 10, 11, 36, 32, 26, 17, 27 , 12, 3, 38, 41, 23]

#9 GT [9, 5, 39, 29, 35, 20, 24, 44, 42, 4, 14, 49, 34, 18, 31, 22, 33, 16, 28, 46, 45, 48, 21, 43, 19, 47 , 13, 1, 7, 6, 30, 0, 8, 37, 25, 11, 40, 27, 3, 15, 26, 12, 10, 2, 38, 41, 36, 32, 17, 23] 99.92%
Pred [9, 5, 39, 29, 35, 20, 24, 44, 42, 4, 14, 49, 34, 18, 31, 22, 33, 16, 28, 46, 45, 48, 21, 43, 47, 19 , 13, 1, 7, 6, 30, 0, 8, 37, 25, 11, 40, 27, 3, 15, 26, 12, 10, 2, 38, 41, 36, 32, 17, 23]

#17 GT [35, 29, 5, 9, 39, 20, 14, 4, 44, 42, 24, 49, 22, 18, 47, 28, 43, 16, 13, 48, 46, 21, 45, 33, 31, 34, 8, 30, 7, 11, 25, 27, 19, 12, 1, 6 , 41, 26, 38, 0, 37, 40, 3, 10, 15, 2, 32, 23, 36, 17] 99.92%
Pred [35, 29, 5, 9, 39, 20, 14, 4, 44, 42, 24, 49, 22, 18, 47, 28, 43, 16, 13, 48, 46, 21, 45, 33, 31, 34, 8, 30, 7, 11, 25, 27, 19, 12, 6, 1 , 41, 26, 38, 0, 37, 40, 3, 10, 15, 2, 32, 23, 36, 17]

#19 GT [35, 29, 5, 9, 20, 39, 4, 42, 14, 44 , 24, 49, 22, 18, 28, 47 , 43, 48, 13, 16, 21, 45, 31, 46, 34, 8, 30, 11, 33, 7, 27, 12, 25, 1, 10 , 6, 37, 38, 0, 41, 19, 26, 40, 3, 15, 2, 32, 23, 36, 17] 99.76%
Pred [35, 29, 5, 9, 20, 39, 4, 42, 44, 14 , 24, 49, 22, 18, 47, 28 , 43, 48, 13, 16, 21, 45, 31, 46, 34, 8, 30, 11, 33, 7, 27, 12, 25, 10, 1 , 6, 37, 38, 0, 41, 19, 26, 40, 3, 15, 2, 32, 23, 36, 17]

#22 GT [35, 29, 9 , 20, 39, 5, 4, 42, 44, 14, 24, 18, 49, 47, 28, 43, 22, 16, 21, 48, 13, 46, 45, 34, 8, 7, 30, 11, 31, 33, 27, 12, 25, 37, 38, 1, 41, 0, 10 , 3, 19, 40 , 6, 26, 15, 2, 32, 23, 36, 17] 99.76%
Pred [35, 9, 29 , 20, 39, 5, 4, 42, 44, 14, 24, 18, 49, 47, 28, 43, 22, 16, 21, 48, 13, 46, 45, 34, 8, 7, 30, 11, 31, 33, 27, 12, 25, 37, 38, 1, 41, 10, 0 , 3, 40, 19 , 6, 26, 15, 2, 32, 23, 36, 17]

#30 GT [20, 35, 29, 9, 5, 4, 39, 42, 44, 14, 49, 47, 18 , 28, 24, 43, 21, 13, 22, 16, 48, 46, 8, 45, 11, 34, 27, 31, 30, 12, 33, 7, 38, 25, 41, 37 , 1, 0 , 3, 10, 6, 26, 40 , 19, 15, 23, 32, 36, 2, 17] 99.67%
Pred [20, 35, 29, 9, 5, 4, 39, 42, 44, 14, 49, 18, 47 , 28, 24, 43, 21, 13, 22, 16, 48, 46, 8, 45, 11, 34, 27, 31, 30, 12, 33, 7, 38, 25, 37, 41 , 0, 1 , 3, 10, 6, 40, 26 , 19, 15, 23, 32, 36, 2, 17]

#36 GT [35, 29, 20, 5, 4, 9, 39, 42, 44, 47, 14, 21, 49, 43, 24, 28, 18, 13, 22 , 16, 48, 8, 11, 46, 27, 45, 30, 34, 12, 33, 7, 31, 41, 38, 37, 0, 25, 1, 10, 26, 3, 6, 19, 40, 15, 23, 36, 32, 2, 17] 99.92%
Pred [35, 29, 20, 5, 4, 9, 39, 42, 44, 47, 14, 21, 49, 43, 24, 28, 18, 22, 13 , 16, 48, 8, 11, 46, 27, 45, 30, 34, 12, 33, 7, 31, 41, 38, 37, 0, 25, 1, 10, 26, 3, 6, 19, 40, 15, 23, 36, 32, 2, 17]

#42 GT [35, 4, 29, 5, 20, 42, 9, 39, 44, 47, 21, 49, 14, 28, 43, 24, 13, 22, 18, 16, 8, 48 , 11, 46, 30, 27, 45, 12, 38, 37, 7, 33, 41, 34 , 31, 1, 25, 40, 26, 10, 0, 6, 3, 23, 15, 19, 36, 32, 2, 17] 99.84%
Pred [35, 4, 29, 5, 20, 42, 9, 39, 44, 47, 21, 49, 14, 28, 43, 24, 13, 22, 18, 16, 48, 8 , 11, 46, 30, 27, 45, 12, 38, 37, 7, 33, 34, 41 , 31, 1, 25, 40, 26, 10, 0, 6, 3, 23, 15, 19, 36, 32, 2, 17]

#47 GT [29, 4, 35, 5, 20 , 42, 9, 44, 39, 21, 47, 14, 49, 43, 28, 13, 22, 24, 18, 16, 48, 8, 11, 46, 30, 12, 27, 45, 38, 7, 31, 37 , 41, 33, 25, 34, 0, 40 , 26, 1, 3, 10, 6, 23, 15, 19, 32, 36, 2, 17] 99.76%
Pred [29, 4, 35, 20, 5 , 42, 9, 44, 39, 21, 47, 14, 49, 43, 28, 13, 22, 24, 18, 16, 48, 8, 11, 46, 30, 12, 27, 45, 38, 7, 37, 31 , 41, 33, 25, 34, 40, 0 , 26, 1, 3, 10, 6, 23, 15, 19, 32, 36, 2, 17]

#56 GT [29, 4, 42, 20, 5, 44, 35, 21, 9, 47, 39, 14, 49, 28, 43, 22, 18, 16, 13, 24, 8 , 11, 46, 48, 30, 27, 45, 7, 41, 38, 37, 12, 33, 0, 31, 25, 40, 3, 26, 1, 23 , 34, 10, 15, 6, 19, 2, 36, 32, 17] 99.67%
Pred [29, 4, 42, 20, 5, 44, 35, 21, 9, 47, 39, 14, 49, 28, 43, 22, 18, 16, 13, 8, 24 , 11, 46, 48, 30, 27, 45, 7, 41, 38, 37, 12, 33, 0, 31, 25, 40, 3, 23, 26, 1 , 34, 10, 15, 6, 19, 2, 36, 32, 17]

Table 3: Comparison of neural network predicted (Pred) depth order to the ground truth (GT) shows the depth order increasing from left to
right. The rank preservation level indicates the inversion ratio of Pred to GT, with incorrect predictions highlighted in orange. The neural network,
trained on 30 time steps, predicts the depth order with at least 84% accuracy (42 out of 50) and correctly identifies the median ensemble
member. Occasional order flips occur when depths are very similar. For example, in time step #3, the depths of ensemble members #6 and #48
are 0.34113405 and 0.34136669, differing by about 0.00023. Local shuffles from prediction inaccuracies do not significantly affect the overall
ranking, as shown by the rank preservation level in the rightmost column.

one flip in the order. The predicted results for the Red Sea dataset
achieved a rank preservation level ranging from 0.9967 to 0.9992.
An important aspect of depth order computation is the identification
of the median ensemble member. As shown in Tables 2 and 3, the
predicted median ensemble members are all correct.

Moreover, although there are occasional order flips in our predic-
tions, these occur when the depths are very similar. For instance, in
time step #3 of the Red Sea dataset (Table 3), the depth of ensem-
ble member #6 is 0.34113405, and the depth of ensemble mem-
ber #48 is 0.34136669. The difference between these two depths
is approximately 0.00002. Similarly, in time step #9 of the Wind
dataset, the depth of ensemble member #9 is 0.3389126, and the
depth of ensemble member #7 is 0.33892963. The difference be-
tween these two depths is approximately 0.00001. These minimal
differences suggest that the neural network’s occasional order flips
are not significant and are within an acceptable error margin, espe-
cially considering the precision required for such fine distinctions.
Further, minor local shuffles arising from prediction inaccuracies do
not significantly affect the representative nature of ensemble mem-
bers (e.g., median, outliers) with respect to the entire ensemble.

4.3 Computational Performance and Comparison
In Table 4, we compare the computation time of the traditional
depth computation algorithm with parallel computation to the per-
formance of our deep learning method for depth prediction. We im-
plemented the traditional depth computation algorithm using C++
and parallelized it with the TBB4 library. To compare our neural
network’s performance, we evaluated it on GPU and CPU using the
same testing datasets and set the batch size to 3000.

Datasets #Ensembles Traditional Approach (CPU) DL (CPU) DL (GPU)
Wind 15 0.336 s 11.50 s 5.85 s

Red Sea 50 245.81 s 40.66 s 16.61 s

Table 4: Comparison of computational time between the traditional
depth computation (Traditional Approach) and our deep-learning-
based approach (DL). The traditional approach uses C++ with the
TBB library, while the DL approach uses PyTorch with a batch size
of 3000. Our method achieves up to 15x speed-up with GPU infer-
ence and 6x with CPU inference for the Red Sea dataset. However,
for the smaller Wind dataset, our neural network is slower than the
traditional algorithm.

By comparing the computational time to the parallel version

4https://www.intel.com/content/www/us/en/developer/

tools/oneapi/onetbb.html

of the depth computation, as shown in Table 4, our deep learn-
ing method provides a speed-up of up to 15X faster using GPU
inference and 6X faster using CPU inference for the Red Sea
dataset. However, for the smaller Wind dataset, our neural network
is slower than the traditional depth computation algorithm.

These results highlight the efficiency of our deep learning ap-
proach for large and complex datasets like the Red Sea, where the
high number of ensemble members and larger spatial domain bene-
fit significantly from GPU acceleration. The neural network’s abil-
ity to parallelize operations and leverage GPU capabilities allows
for substantial time savings in such scenarios. However, when tak-
ing the training time into consideration, the deep learning-based ap-
proach is not as efficient as the traditional computation. The initial
time investment required for training the neural network can offset
the gains achieved during inference, especially for smaller datasets
or less complex tasks.

5 CONCLUSION

We propose a deep neural network to predict the depth order in
computing surface boxplots for time-varying scalar ensemble data.
This study is the first to apply deep learning to functional depth
computation. Our results show that the model’s depth order predic-
tions closely match the ground truth and accurately identify median
members, which are essential for surface boxplots. Our method is
up to 6 times faster than the original depth computation algorithm
when using a CPU for inference and 15 times faster when using a
GPU for the Red Sea dataset with 50 ensemble members. Despite
the long training times typical of deep learning projects, the fast
inference speed for larger and more complex datasets makes our
neural network approach well-suited for integration into visualiza-
tion tools to quickly compute surface boxplots.

In the future, we plan to explore the model’s performance on
other datasets with varying complexity and ensemble sizes to gain
deeper insights into its generalizability and potential areas for en-
hancement. We also aim to optimize the training process to reduce
time and resource requirements, making the approach more practi-
cal. Moreover, future work could focus on improving the precision
of the model to further reduce minor discrepancies. Additionally,
integrating the neural network into surface boxplot visualization
tools would be another valuable application. Finally, we will inves-
tigate the applicability of transfer learning [31] using our method on
other ensemble data from the same simulation, thereby broadening
the scope of its utility.
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