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Abstract—Data compression plays a key role in reducing
storage and I/O costs. Traditional lossy methods primarily
target data on rectilinear grids and cannot leverage the spatial
coherence in unstructured mesh data, leading to suboptimal com-
pression ratios. We present a multi-component, error-bounded
compression framework designed to enhance the compression
of floating-point unstructured mesh data, which is common in
scientific applications. Our approach involves interpolating mesh
data onto a rectilinear grid and then separately compressing the
grid interpolation and the interpolation residuals. This method
is general, independent of mesh types and typologies, and can
be seamlessly integrated with existing lossy compressors for
improved performance. We evaluated our framework across
twelve variables from two synthetic datasets and two real-
world simulation datasets. The results indicate that the multi-
component framework consistently outperforms state-of-the-art
lossy compressors on unstructured data, achieving, on average,
a 2.3 − 3.5× improvement in compression ratios, with error
bounds ranging from 1×10−6 to 1×10−2. We further investigate
the impact of hyperparameters, such as grid spacing and error
allocation, to deliver optimal compression ratios in diverse
datasets.

Index Terms—unstructured data compression, error-control,
multi-components

I. INTRODUCTION

Unstructured meshes are widely utilized in finite element
simulations due to their flexibility in representing complex
geometries [1], [2]. The resulting datasets consist of mesh
topology and multi-variate data defined on mesh vertices.
As advancements in HPC hardware enable higher resolution
and faster simulation timesteps, the volume of generated data
imposes immense demands on storage and transmission. For
instance, a gas turbine jet engine simulation using GE’s GEN-
ESIS code encompasses billions of mesh points [3]. A single
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variable in double-precision format can reach tens of terabytes,
with post-analysis requiring time-series data across multiple
time steps. This scenario necessitates the development of
effective data reduction techniques that minimize information
loss while preserving scientific integrity. Due to the high
entropy in floating-point data produced by scientific computa-
tions, lossless compression techniques typically achieve lim-
ited compression ratios (e.g., less than 2×). Error-controlled
lossy compression has proven successful in scientific data
compression by exploiting spatial and temporal redundancies
and ensuring loss remains within user-prescribed bounds.

In recent years, numerous lossy compressors for floating-
point data have been developed, including MGARD [4]–[6],
SZ [7]–[10], ZFP [11], [12], SPERR [13], and GAE [14], [15].
These compressors typically assume a regular grid layout and
rely on block or stencil-based algorithms to convert data into
small-magnitude coefficients amenable to compression. When
applied to unstructured-mesh data, most of these techniques
require serialization of node data followed by compression
on 1D arrays. This serialization often leads to sub-optimal
compression ratios due to overlooking data correlations within
the mesh topology and the incoherent data distribution caused
by the arbitrary connectivity through mesh cells. While value-
based vertex traversal [16] can mitigate some of these issues,
it may slow down the compression and add overhead for
storing the traversal graph. There are also methods that reduce
unstructured data over their original mesh topology, but often
transition data into entirely different formats [17], which
complicates post-analysis and error preservation, or are limited
to specific mesh types or topology (e.g., tetrahedrons which
can be gradually refined [18]).

In this paper, we propose a generic approach that can
be integrated with any error-controlled lossy compressors,
without requiring invasive code changes or custom mesh
traversal, to significantly improve compression ratios for data
defined on arbitrary unstructured meshes. Our method ap-
proximates datasets defined over unstructured meshes onto
rectilinear grids and performs multi-component compression



on the interpolated values on the rectilinear grid and the inter-
polation residuals on the original unstructured mesh vertices.
To motivate our approach, we compare a 2D unstructured mesh
and a 2D rectilinear grid. Figure 1 shows a variable (pressure)
simulated by OpenFoam and its scatter-based interpolation on
a 2D rectilinear grid. Using a number of nodes equivalent
to 39% of the mesh vertices, the resulting approximation
faithfully conveys the properties of the original variable and
produces low approximation errors when interpolated back
to mesh vertices. These approximation errors, refereed as
residuals in this paper, are more amenable to compression
than the original data values, and the approximation on the
rectilinear grid can also achieve high compression ratios by
exploiting data correlations in high-dimensional space.

Our framework can be summarized as follows. Given the
vertices and associated data values of an unstructured grid and
a user-prescribed error bound, our framework first constructs a
rectilinear grid optimized for high compression ratios and low
approximation errors. Next, we map the data values from the
mesh vertices to the rectilinear grid nodes using a customized
or user-supplied interpolation kernel and compute the residuals
at the mesh vertices. Finally, we distribute the error bound and
use error-controlled lossy compressors to independently reduce
both the approximation and the residual components.

The salient aspects of our work are:

• We develop a generic and effective framework to reduce
unstructured mesh data based on mesh-rectilinear grid
interpolation and multi-component compression. Existing
error-controlled lossy compressors can be seamlessly in-
tegrated into our framework to enhance their performance
in a rather non-disruptive manner.

• Our approach does not require special types of meshes
or typologies. Additionally, since the mesh-to-rectilinear-
grid conversion is independent of the field values, the
corresponding vertex mapping can be precomputed and
reused across multiple variables and timesteps, which
reduces storage overhead and accelerates computations.

• The compression ratio and computational cost can be
adjusted via the grid spacing and the error bounds used
for compressing the grid approximation and residuals.
The overhead in computing time varies with grid spacing,
ranging from 26% to 100% under the parameter settings
used in our experiments. Our approach achieves an aver-
age improvement in compression ratios of approximately
2.3− 3.5×, and up to 14×, among three lossy compres-
sors evaluated within our framework.

The details of our approach follow a review of related work
on error-controlled and unstructured data compression. We
demonstrate the generality of the proposed framework through
the integration with three state-of-the-art lossy compressors
and evaluate performance across different variables taken from
multiple synthetic and real applications simulated unstructured
mesh datasets.

Fig. 1: Example of a variable generated using OpenFoam
on a 2D unstructured mesh (left) and its interpolation on a
rectilinear grid (right). The airfoil blade is a hollow region in
the left figure and interpolated as zeros in the right figure.

II. RELATED WORK

Lossy compression reduces data by exploiting redundancies,
achieving greater compression ratios than lossless compres-
sion at the cost of some accuracy. It’s crucial that the data
compressed using lossy methods meet numerical accuracy
requirements to ensure the preservation of scientific integrity.
State-of-the-art, error-controlled compressors fall into two cat-
egories: transformation-based approaches and prediction-based
approaches. Transformation-based methods (e.g., MGARD
[4], [6], [19], ZFP [12], TTHRESH [20]) utilize customized
transformations to mitigate data redundancies. In contrast,
prediction-based methods (e.g., ISABELA [21], SZ [22])
leverage diverse predictors to de-correlate data. Both types
of methods produce coefficients of smaller magnitude that
become zero after quantization, enabling compacted storage
of the compressed data.

Most existing lossy compressors are designed for rectilinear
grid data. For example, ZFP divides data into non-overlapped
blocks and transforms the floating-point data in each block into
variable-length bit-streams independently. TTHRESH reduces
dimensionality using techniques like Tucker and HOSVD,
which rely on tensor decomposition on multidimensional grids.
Similarly, all predictors implemented in the SZ family (e.g.,
Lorenzo, polynomial interpolation, and regression) require
partitioning data into small blocks or sub-grids of different
sampling rates.

Few lossy compressors can directly handle unstructured
mesh data. MGARD reduces data through orthogonal decom-
position, requiring a hierarchical refinement to be performed
among triangular/tetrahedral cells, which limits its use case
[18]. Ren et al. [16] proposed a prediction-traversal approach
that sequentially visits/compresses mesh nodes until an unpre-
dictable node is encountered, then initiates a separate sequence
from a new seed until all nodes are traversed. Due to the
additional costs of storing traversal sequences, this approach
delivers improvements only within limited error ranges and has
a high computational overhead, with a throughput of less than
1MB/s. In contrast, most state-of-the-art lossy compressors
(e.g., MGARD, SZ, ZFP) achieve throughputs of tens to
hundreds of MB/s [4], [23].

Researchers also explored compressed sensing techniques
for unstructured mesh data compression [24], [25]. However,
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Fig. 2: A multi-component compression for unstructured mesh
data consists of building an interpolation on rectilinear grid
and independent compression of grid interpolation and resid-
uals on meshes.

like neural network-based compression models [14], [15],
[26], [27], these methods suffer from unbounded errors and
require tens to hundreds of iterations to reach a faithful
reconstruction. Another set of related research involves the
reduction of unstructured meshes. For example, El-Rushaidat
et al. [17] aimed to convert unstructured data into rectilinear
grids, while Berger and Rigoutsos [28] further explored cluster
and adaptive mesh refinement (AMR) algorithms to reduce
grids into non-uniform structure consist of fewer rectangular
patches. Various studies have also addressed compressing data
in AMR forms [29]–[31]. Our work is motivated by some
mesh-to-grid data approximation techniques discussed in the
aforementioned work but fundamentally differs in two key
aspects: first, our primary objective is to reduce the storage
cost rather than accelerate analytic tasks such as visualization;
second, we aim to maintain the general structure of reduced
data and mathematically preserve errors incurred during data
compression.

III. PRELIMINARIES

In this section, we provide an overview of the proposed
framework and the proof of error control. As illustrated in
Figure 2, the key idea is to represent field values on mesh
vertices using an approximation over a rectilinear grid and the
approximation error (i.e., residuals). We denote the original
field values on mesh vertices as x, the interpolated data on
grid points as x1, the residuals on mesh vertices as x2, and
the operator that interpolates x1 back to mesh vertices as g(.),
where g : Rn1 → Rn2 is a multidimensional, multivariate
function that maps the n1 data points in the rectilinear grid to
n2 data points in the original grid. The original vertex values
can then be reconstructed through x = x2 + g(x1).

Let c(.) represent an error-controlled compressor that guar-
antees the error in the reconstructed data satisfies max |ϵ| =
max |u − u′| ≤ τ , where ϵ is the compression error, τ is the
input error bound, and u and u′ represent the original and lossy
reduced data. Compression of the original data values on mesh
vertices leads to an error max |ϵ| = max |x − x′| ≤ τ , and
compression for the grid approximation and residuals results in
two other error components: max |ϵ1| = max |x1 − x′

1| ≤ τ1,
and max |ϵ2| = max |x2 − x′

2| ≤ τ2. The reconstruction of
x using the lossy reduced components x′

1 and x′
2 can be

captured by x′ = g(x′
1) + x′

2. For any linear interpolation
function g, such that gi(x) = aTx, where a is the interpolation
coefficient, the error in the reconstructed data can be bounded
by (

∑
j |aj |)τ1 + τ2 according to basic linear algebra. Hence,

given a prescribed error bound τ on the unstructured mesh
data x, we can compress the components of x1 and x2 under
the error bound τ1 and τ2, respectively, and ensure the error
in the reconstructed mesh data satisfies |ϵ| ≤ τ as long as
(
∑

j |aj |)τ1 + τ2 ≤ τ . In a special case where g corresponds
to nearest neighbor value or piece-wise linear interpolation of
grid points, this requirement reduces to τ1 + τ2 ≤ τ because∑

j |aj | = 1.

IV. MULTI-COMPONENT UNSTRUCTURED DATA
COMPRESSION

A. Rationale of multi-component compression

In the previous section, we proved that compression for
unstructured mesh data can be performed through indepen-
dent compression of two components—the approximation on
rectilinear grid and residuals—while ensuring the accuracy of
recomposed data by adjusting the error bounds used for com-
pressing individual components. We propose constructing the
rectilinear grid based on the locations, rather than field values,
of mesh vertices. The compression ratio (CR) of the proposed
multi-component approach is captured as CR = (c1 + c2)/S,
where c1 and c2 are the compressed sizes of interpolation
approximation and residual components, respectively, and S is
data original size. We exclude the grid and mesh layouts (e.g.,
node/vertices coordinates and cell connectivity) from the CR
measurement as they remain static and can be reused across
numerous timesteps and multiple variables sharing the same
set of meshes.

Unlike vertices in unstructured meshes, whose indices often
ignore the spatial coherence of field values, axis-aligned grids
have implicit geometric coherence. Thus, lossy compression of
approximation values on grids can better exploit the smooth-
ness of scientific data in space and time. Additionally, assum-
ing the interpolated grid values provide a faithful representa-
tion of the mesh data, the residual values will be small hence
are more compressible than their original values. These points
form the rationale for the proposed multi-component com-
pression, suggesting that the combined size from compressing
two components could be smaller than directly compressing
unstructured mesh data. The main penalty of using multi-
component compression lies in the overhead of compressing
the grid interpolation and performing interpolation operations.



Nevertheless, provided sufficiently larger compression ratios
can be achieved, as demonstrated in Section V, the reduction
on I/O time and storage cost will likely compensate for the
overhead in compression time. We also study the impact of
grid sampling rate on approximate errors and the aggregated
compression ratios in Section V-B, providing guidance for
users to make trade-offs.

B. Design overview

Figure 3 illustrates the workflow of our multi-component
compression and decompression for values on an unstructured
mesh. The grid construction produces grid layouts and a mesh-
grid mapping table, which can be reused across multivariate
and timestep datasets to accelerate the interpolation operation
g(x1) required for residual calculation and mesh data recon-
struction. The mesh-to-grid interpolation can be performed
through any customized algorithm, and we introduce a com-
putationally light interpolation function in Section IV-D. The
residual values on mesh vertices are then calculated through
x− g(x1), where x is the original value at a mesh vertex.

The multi-component framework splits the input error
bound τ between τ1 and τ2, which are tolerance used for
compressing the interpolated grid nodes and mesh residual
values. The actual compression is conducted through error-
controlled lossy compressors. The interpolated grid values
are compressed in the N-dimensional Cartesian coordinate
space, whereas the residuals are serialized into a 1D array for
compression. The reconstruction follows an inverse procedure
to compression, where the interpolation values (i.e., x′

1) and
residuals (i.e., x′

2) are decompressed independently and re-
composed to form the reconstructed values on mesh vertices.
The entire pipeline is automated but allows users to optimize
for individual cases by fine-tuning parameters such as the
grid spacing and error distribution between grid interpolation
and residuals. The hyperparameter tuning and its impact on
compression performance will be explored in Section V-B.

C. Grid Construction

The size of mesh cells is often nonuniform across compu-
tational space, with finer cells near boundaries and regions
requiring a higher resolution. Our grid construction module
consists of two steps: initializing grids with uniform spacing
along each spatial dimension, followed by adaptive coarsen-
ing based on the spatial distribution of mesh vertices and
the operator g(x1) used for grid-to-mesh interpolation. The
module also outputs a vertex-wise index table {mi} recording
the vertex-node mapping.

The algorithm for initializing the uniform grid is presented
in Algorithm 1. Generally, the grid construction module
traverses meshes based on cell connectivity, measuring the
distance between vertices and choosing the value at the bottom
k% percentile (user-supplied parameter) along each spatial
dimension as the grid spacing of the corresponding axis. Grid
corners are assigned based on the minimum and maximum
value of the mesh vertices along each dimension. As shown

in the Algorithm 1, an upper bound on grid discretization Gmax
may also be prescribed to avoid over discretization.

Algorithm 1 GRID INIT

Input: mesh vertices coordinates {pi}, connectivity {cj}, dimension D,
Gmax max number of nodes along each axis, k%ile of vertex distance
Output: grid corners {gsd} and spacing {min pd, max pd}

1: {{si}d}, {min pd, max pd} ← traverse_mesh({pi}, {cj}) /*ob-
tain min/max, and vertex distance along each dimension*/

2: for d = 1→ D do
3: gsd ← percentile(k, {si}d)
4: gnd = (max pd − min pd)/gsd
5: while gnd ≥ Gmax do
6: k ← k + δ
7: gsd ← percentile(k, {si}d)
8: end while
9: end for

10: return {gsd}, {min pd, max pd}

We implemented a lightweight function g(.) to minimize
the computational overhead. For each mesh vertex x[k], we
approximate its value using the nearest grid node, mk, such
that the residual is derived as x2[k] = x[k] − x1[mk]. Due
to varied cell sizes, irregularly shaped boundaries, and hollow
regions in the mesh geometry, some grid nodes may not be
utilized during the residual and reconstruction computation,
thus leading to resource waste. To address this, we adaptively
coarsen the grid, as detailed in Algorithm 2. The grid coarsen
module first traverses the mesh vertices to find their closest
grid nodes. This traversal has two objectives: (1) building
a grid-to-mesh mapping which can be reused to accelerate
residual calculation and data recomposition, and (2) flagging
grid nodes that are unvisited in back interpolation. Next, the
algorithm scans along each grid axis, checking for unvisited
arrays/planes.

Algorithm 2 GRID COARSEN

Input: mesh vertex coordinates {pi}, grid layout S, dimension D
Output: mesh-grid node mapping {mi}, updated S

1: G node.visited ← False
2: /*loop through nv mesh vertices*/
3: for i = 1→ nv do
4: mi ← MAP(pi, S) /*mapping varies with g(.)*/
5: G node[mi].visit ← True
6: end for
7: /*loop through grid nodes*/
8: for d = 1→ D do
9: for k in coord[d] do

10: planes.visited ← check_visit(G node.visited, S, k) /*check if
any node in the plane forms by the rest dimensions was visited*/

11: if planes.visited == False then
12: update S, {mi}
13: end if
14: end for
15: end for
16: return {mi}, S

Since the AMR-type data cannot be handled by most lossy
compressors, coarsening must be performed on all nodes along
the corresponding dimensions within the coarsened range. For
irregular-shaped meshes, they may yield grids with “blank”
regions/nodes that cannot be eliminated due to the continuity
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Fig. 3: Workflow of the proposed multi-component, error-controlled compression and decompression algorithm for unstructured
mesh data. We assume that there are multiple variables sharing the same set of meshes and the mesh remains static across
different timesteps data, such that the mesh-grid mapping can be pre-computed to accelerate compression and decompression.

along grid axes. Hence, our framework implements a variation
algorithm where the component x1 contains only grid nodes
visited in Algorithm 2. These nodes are treated as seeds for
vertices in surrounding regions to interpolate residuals and
then serialized for compression. Our framework automatically
switches to the variation implementation when the percentage
of G node.visit fails to reach a given threshold.

D. Compression

Algorithm 3 details the multi-component compression mod-
ule, which consists of three parts: grid values interpolation,
residual calculation, and independent compression of inter-
polated values and residuals. We denote the interpolation
function used for approximating grid values as f(.). Note
that the objective of our research is to maximize the com-
pression ratio of unstructured data under a numerical error
bound, rather than to produce the best “visualization”. The
function f(.) that produces the smoothest approximation may
not lead to the smallest magnitude for mesh residuals since
the back interpolation g(.) used for residual calculation must
be a linear function to ensure error preservation. Consider-
ing the overhead incurred to compression throughput, our
framework implements two operators for f(.), one based on
linear interpolation and another based on cluster. The cluster-
based function takes the mean of n vertices data closest
to node j (i.e., x ∈ Cj) as the interpolated value, i.e.,
x1[j] =

∑n
x∈Cj

x[i]/n. Despite its simplicity, x1[j] minimizes
the residuals as

∑
x∈Cj

(x[i]−x1[j])
2 is smallest when x1[j] is

the mean value of the x[i] assigned to the cluster Cj . Users can
replace f(.) using other customized interpolation functions.
The residual computation and independent compression—
C(x1) and C(x2)—are described in Section IV-B. Here, C
can be any error-controlled lossy compressor.

E. Reconstruction

Reconstruction follows the inverse procedure of compres-
sion, as detailed in Algorithm 4. Similar to multi-component
compression, grid approximation and mesh residual values
are decompressed independently. Data values are recomposed

Algorithm 3 MULTI-COMPONENT COMPRESSION

Input: mesh-grid mapping {mi}, mesh vertices value {xi}, grid layout S
Output: compressed residual values µ2, compressed grid values µ1

1: x1 ← 0
2: /*Obtain grid interpolation values*/
3: for i = 1→ nv do
4: x1[mi]← f(xi, x1[mi])
5: end for
6: x2 ← x− g(x1)
7: /*multi-component compression*/
8: µ1 = C(x1) /*C as the compression function*/
9: µ2 = C(x2)

10: return µ1, µ2

back to the original mesh vertices through: x′ = g(x′
1) + x′

2.
Errors in the recomposed mesh data are guaranteed to stay
within the user-prescribed input tolerance, as we proved in
Section III.

Algorithm 4 MULTI-COMPONENT RECONSTRUCTION

Input: compressed residual values µ2, compressed grid values µ1, grid
layout S, mesh-grid mapping {mi}
Output: reconstructed mesh values x′

1: x′
1 ← D(µ1) /*D as the decompression function*/

2: x′
2 ← D(µ2)

3: for i = 1→ nv do
4: x′

i ← g(x′
1[mi]) + x′

2i
5: end for
6: return x′

V. EXPERIMENTS

A. Datasets and evaluation metrics

In this section, we evaluate our multi-component com-
pression framework using 12 variables captured from two
synthetic datasets and two real-world simulation datasets.
Detailed specifications are presented in Table I, with selective
visualization shown in Figure 4. The synthetic datasets were
generated by OpenFoam [32] through the PISO algorithm
[33], which solves the pressure-velocity calculation for the
Navier-Stokes equations. We simulated turbulent flow for a
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Fig. 4: Visualization of the benchmark mesh data

2D NACA airfoil validation case on a small and large sets of
meshes and initialization parameters, denoted as airfoil-small
and airfoil-large. The Nek5000-turbPipe dataset was obtained
from a simulation of fully-developed turbulent pipe flow [34]
generated by Nek5000 [35], a computational fluid dynamics
code. The VKI dataset was obtained from a simulation of the
VKI (von Karman Institute) gas turbine blade cascade test case
[36] generated by GE’s GENSIS software.

We utilize three state-of-the-art error-controlled lossy com-
pressors (detailed in Table II) within our framework to demon-
strate the enhancement and generality. As reviewed in Section
II, these compressors are designed for compressing scientific
data on rectilinear grids, requiring mesh data to be serialize,
usually based on their original order in the files, before
compression [37], [38]. We denote this 1D serialization-based
compression as default.

Throughout the evaluation, we demonstrate the impact of
different hyper-parameters and how compression ratios can be
significantly improved under our multi-component framework.
We define the following metrics: (1) Compression ratio (CR):
defined in Section IV-A. (2) Achieved compression error ϵ:
errors measured in reconstructed data, required to be less than
the input compression error bound τ . We choose the relative
l2 error, denoted as ϵ =

∑√
(x− x′)2/

∑√
x2, as the error

metric, where
∑√

x2 represents the norm of the original data.
(3) Improvement ratio: the ratio of the compression ratios
achieved by our multi-component framework to the default
approach implemented with the same lossy compressor. (4)
Throughput overhead: the extra time spent using our multi-
component framework comparing to the default method.

The experiments were conducted on the Frontier supercom-
puter [39]. Each Frontier compute node consists of a 64-core
AMD 3rd Gen EPYC CPU with access to 512 GB of DDR4
memory. All source code was writeen in C/C++. Although
most lossy compressors tested in this work support multi-
threading or GPU acceleration, we tested only the single core
CPU execution mode as code parallelism is irrelevant to our
evaluation metrics.

dataset 1 dim attributes # of vertices
Nek5000-
turbPipe

3D velocities 1,451,520

VIK turbine
blade

3D pressure, density,
Velocities

209,121,200

OpenFoam
airfoil-small

2D pressure,
velocities

527,904

OpenFoam
airfoil-large

2D pressure,
velocities

1,994,776

TABLE I: Data sets used for benchmark

Compressor Version GitHub repository
MGARD 1.5.2 https://github.com/CODARcode/MGARD

SZ3 3.1.8 https://github.com/szcompressor/SZ3
ZFP 1.0.1 https://github.com/LLNL/zfp

TABLE II: Compressors used in our multi-component com-
pression framework

B. Hyperparameter optimization

We begin by exploring the impact of grid spacing on multi-
component compression ratios. The grid spacing is the node
distance along each spatial dimension, which is selected based
on the percentile (%ile) of the vertex distance, as discussed
in Algorithm 1. It represents the finest scale in grid ap-
proximation. We evaluate parameter settings using the highly
fluctuated velocity data from a fully-developed turbulent pipe
flow simulated by Nek5000 and the pressure data from a
relatively smooth region in a VKI turbine blade simulation.
Figure 5 illustrates the compression ratios under different
parameter settings, with combined compression ratios plotted
on the left and the individual compression ratios for grid
interpolation and residual data on the right in each subfigure.
As shown in Figure 5a and 5c, as the grid spacing coarsens,
the compression ratio of grid interpolation data rises due to the
reduced number of grid nodes. Meanwhile, the compression
ratio of interpolation residuals decreases due to increased
approximation errors. The combined compression ratios peak
at grid spacing equal to around 30−40% of the vertex distance
percentile for VKI pressure data and at 1% of the vertex
distance percentile for Nek5000 data. The turbulent Nek5000
data requires fine-grained grid representation, or it would yield



(a) Impact of grid spacing using Nek5000 velocity data (b) Impact of error allocation using Nek5000 velocity data

(c) Impact of grid spacing using VKI pressure data (d) Impact of error allocation using VKI pressure data

Fig. 5: Impact of hyper-parameters on achieved compression ratios: demonstrated using data exhibiting different scales of
smoothness.

significant interpolation errors (i.e., mesh residuals). The VKI
pressure data, in comparison, are relatively smooth, thus can
afford to interpolate on coarser grids.

Next, we fix the grid spacing at the 1% percentile and 20%
percentile for the Nek5000 and VIK datasets, respectively, and
study the impact of error allocation in Figure 5b and 5d. Our
implementation requires τ1+τ2 ≤ τ , where τ is the requested
error bound on mesh data, τ1 and τ2 are error bounds used
for compressing the grid interpolation and mesh residuals,
respectively. As the τ1 increases, the compression ratio of grid
data becomes larger, and the compression ratio of interpolation
residual drops. However, the combined compression ratios for
Nek5000 and VKI datasets exhibit opposite trends because the
combined ratio is upper bounded by the compressibility of grid
interpolation for Nek5000 data and by interpolation residuals
for VKI data.

C. Benchmark Datasets Evaluation

To verify that our framework meets error bounds, we use
the Nek5000-turbPipe velocity field and plot in Figure 6 the
measured error ϵ as a function of input error bound τ . We
denote the data compressed through serialization by “-default”
and the proposed multi-component approach by “-mc”, with
both approaches using MGARD as the underlying compressor.
The evaluation shows that the errors in multi-component com-
pressed data stay below the prescribed error bounds and are
comparable to the ones derived through standard serialization-
based approach.

Using MGARD as the underlying compressor, we plotted
in Figure 7 the compression ratios as a function of τ for
12 variables in four unstructured datasets. We chose a grid
spacing of 10%, 40%, 30% percentile, and τ1/τ = 0.99, 0.15,
0.9 for all variables in Nek5000, VKI, and two OpenFoam

Fig. 6: Compression error analysis, with x-axis represent-
ing the requested/input error bound and y-axis representing
the archived relative root-of-mean-square error measured in
lossy compressed data. The evaluation was conducted using
Nek5000-turbPipe’s velocity field.

airfoil datasets, respectively. Different variables from the same
the dataset (e.g., density, pressure, and three velocities in
VKI turbine blade) share one set of parameter settings. In
this way, the cost of grid construction can be amortized,
not counting towards overhead. Several general trends were
noted. First, the multi-component compression (blue curves)
almost always outperforms the serialization approach (orange
curves). Second, the improvement ratio is not constant but
generally larger at high error ranges. This is expected as large
error bounds would quantize more residual data into zeros,
leading to higher improvements in combined compression
ratios. Third, the improvement ratio is typically higher for
more “compressible” data, where a compression ratio of 10×
or more can be achieved using the serialization approach under
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Fig. 7: Compression ratios comparison between default and the proposed multi-component approach, exemplified using MGARD
as the underlying lossy compressor.

a relative small error bound. This usually indicates strong
spatial correlation, which our multi-component compression
can better leverage. For example, the velocity Y vs. velocity
Z values in VKI turbine blade dataset and the velocity Z vs.
velocity X values in Nek5000 turbPipe dataset.

Finally, we plotted in Figure 8 the improvement ratios
achieved for three lossy compressors—SZ, MGARD, and
ZFP—using our multi-component framework. The improve-
ment ratio for three compressors exhibits a trend similar – the
multi-component implementation delivers larger improvement
ratios at high error ranges, but their level of improvement
varies across datasets. We suspect the distinction is due to
different de-correlation and quantization functions used by
the three underlying compressors. Across the entire set of
variables and error bounds, our multi-component compression
consistently outperforms the serialization-based implementa-
tion, with improvement ratios ≥ 1 for all three lossy com-
pressors, except for ZFP at τ = 1 × 10−4 with the velocity
Z data in VKI turbine blade dataset. We notice that VKI-
velocityZ data field is extremely difficult to compress, with
values following almost a random distribution with a mean of
zero, as illustrated in Figure 4. ZFP exploits data redundancies
through breaking data into 4d blocks and performing orthog-
onal transformations. Given that the compression of residual
data is conducted in 1D rather than the 4×4×4 space preferred

by the transformation algorithm, ZFP is expected to obtain
less significant improvement than the other two compressors.
Across the 12 mesh variables and five error tolerance ranges,
MGARD, SZ, and ZFP achieve an average improvement ratio
of 3.5×, 3.1×, and 2.3× respectively.

D. Runtime overhead

Our evaluation excludes the cost of mesh-to-grid translation,
as the resulting map can be reused across multiple timesteps
and data fields, providing that the mesh structure remains
unchanged. Hence, the overhead of the multi-component com-
pression comes from the compression of grid approximation,
mesh-to-grid data interpolation (i.e., f(.)), and the back in-
terpolation (i.e., g(.)) for residual calculation. Given f(.) and
g(.), the computation overhead is closely linked to the number
of grid points used for interpolation, which is controlled by
the hyperparameter of grid spacing. We therefore evaluate the
overhead of multi-component compression as a function of
grid spacing and plot the results in Figure 9. We denote the
overhead as (Tmc − Tdefault)/Tdefault, where Tdefault represents
the time spent on compressing using the same underlying
compressor through the serialization approach. For grid spac-
ing of 10%, 30%, and 40%, which are parameters used for
the evaluations conducted in Section V-C, the computational
overhead ranged from 26% to 101%. This overhead can be
compensated considering the speedup for I/O and storage



Fig. 8: Improvement ratios achieved by the proposed multi-component approach, demonstrating using three lossy compressors
across different error bounds, compared to the serialization-based compression conducted through the same underlying
compressors.

Fig. 9: Overhead of throughput performance as a function of
the grid spacing.

savings with the greatly reduced data size obtained using our
approach. Users can also trade off the compression ratios for
smaller computational overhead when throughput is a major
concern.

VI. CONCLUSION

In this paper, we develop a multi-component, error-bounded
compression framework tailored for scientific data on unstruc-
tured meshes, addressing the limitations of existing methods
that primarily target rectilinear grid data. Our framework
interpolates mesh data onto a rectilinear grid, then indepen-
dently compresses both the grid representation and the ap-
proximation errors on meshes (i.e., residuals). Reconstruction

is achieved by combining the decompressed grid data and
mesh residuals at the original mesh vertices. Our solution
is effective and general, seamlessly integrating into existing
I/O and compression pipelines to enhance the compression of
unstructured mesh data with minimal code changes. Extensive
experiments using OpenFoam synthesized and real simulation
datasets demonstrate that our approach achieves, on average,
a 2.3 − 3.5× improvement in compression ratios when used
with three state-of-the-art lossy compressors, within an error
bound range of 1×10−6−1×10−2. In the future, we plan to
investigate potential improvements offered by using different
interpolation functions (i.e., f(.) and g(.) as discussed in the
paper) and assess their impact on throughout. We will also
evaluate the combined time spent on compression and the I/O
of reduced data.
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