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Abstract—The rapid advancement in scientific simulations and
experimental facilities has resulted in the generation of vast
amounts of data at unprecedented scales. The analysis and visu-
alization of large amounts of data is a challenge in and of itself,
but the requirements for timeliness significantly magnify these
difficulties. Near real-time visualization is critical to monitor and
analyze the data produced by these large facilities, but current
production tools are not well-suited to these requirements. In
this position paper, we share our perspective on some of the
challenges, and thus, opportunities for research that stand in the
way of near-real-time visualization of large scientific data.

Index Terms—Visualization, Real-time Systems, Human-
computer Interactions

I. INTRODUCTION

The continued growth of sensor and computational technol-
ogy enables experimental, observational, and computational
facilities, enabling the scientific community to probe deeper
across a wide range of scientific inquiries. The continued
advances in these technologies have resulted in a significant
increase in the data produced. These increases include the
amount of data, the type and varieties of data, and the velocity
at which it is produced. Additionally, there are efforts un-
derway to couple individual facilities together into computing
ecosystems to study more complex scientific phenomena [1].
This in turn will magnify the already growing data problem.

Extracting understanding using visualization and analysis
of this data will be critical to its success. Further, because of
the cost and complexity, knowledge extraction in near real-
time (NRT) is critical. In this context, we define NRT as a
time constraint on required results. As such, NRT constraints
will vary based on the context and scientific needs. NRT
constraints could be as small as fractions of a second, or
range from minutes to hours, or even days. The wide range

of possibilities in NRT makes it particularly challenging as
visualization and analysis routines must be adaptable to a wide
range of environments and constraints.

As an example, scientists need quick feedback on a sim-
ulation running on an exascale computer to ensure that it is
converging as expected or if the run should be killed to not
waste costly resources. In experimental science, it is critical to
ensure that the sensors are properly functioning and gathering
the expected data.

Scientists only have a fixed amount of time to use these
resources so timely feedback is critical to ensure that the
maximum amount of insight can be gained from the time
allocations on these systems. Visualization plays a unique role
because the visual representations of complex data provide an
efficient communication of information.

Large-scale parallel visualization poses a significant chal-
lenge in the realm of scientific computing, primarily due to the
sheer volume and complexity of data generated by simulation
and experimental facilities. These massive datasets can exceed
terabytes or petabytes in size making it impossible to visualize
on a single resource.

This challenge is compounded by the need for interactive
exploration of visualization results to gain insight and under-
standing of the data. Tools like ParaView [2] and VisIt [3]
have been developed that take advantage of parallel processing
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hardware and the use of client-server software architectures to
distribute data processing and rendering tasks across multiple
nodes. These tools also leverage VTK-m [4] to take advantage
of parallel GPU processing on the nodes. These fully featured
production tools support many visualization algorithms for the
visualization of scalar and vector fields in data.

However, the production tools of today are not well suited
to the demands of NRT. To perform visualization, estimates
are made on the required time and amount of resources. NRT
adaptation of either is challenging under the rigid constraints
imposed by NRT. This results in inefficiency at best and
lost opportunities for scientific insight at worst. This path
is not sustainable going into the future as systems become
more complex, the resources more heterogeneous and the data
continue to grow. In this position paper, we discuss the top
seven challenges to successful near-real-time visualization of
extreme-scale data.

II. TOP SEVEN CHALLENGES

We have identified seven of the most significant challenges
to NRT visualization, and describe each in this section. We
also discuss the research opportunities associated with each
as a way to expand the conversation in the community to
research and develop solutions. The order of the challenges
does not reflect their relative importance but rather the relative
association of challenges with one another.

A. Human in the Loop and AI Assistants

Science projects that need NRT capabilities typically
work in teams and depend on collaboration and fast-paced
cross-disciplinary decision-making. The complexities of the
decision-making scenarios are further exacerbated by the cog-
nitive overload involved in the tasks. In addition, due to the
restrictions on wall clock time before each task needs to be
completed, there are scarcely any opportunities for scientists to
interact with the visualization on their screen, vary the controls
of the visualization to navigate the problem space, and iterate
towards a deeper understanding of the situation at hand. This
hampers the potential of more exact and optimal control of
the scientific apparatus in the NRT context.

Due to the recent explosive growth or wider acceptance of
AI methods, there is a great opportunity to now explore build-
ing AI assistants to help scientists with recurring cognitive
tasks, for example, to inspect a sequence of visualizations to
determine whether an experiment or simulation is progressing
as intended, or whether a feature of interest has occurred.
Such AI assistants will have natural explainability because
the sequence of images can be easily inspected by a human
scientist to confirm the classification made by an AI assistant.
In addition, through reinforcement learning, which has become
widely adopted in many fields, the human scientist can label
the results as a natural step to guide the AI assistant, in ways
very similar to how a senior scientist would train or mentor a
junior scientist.

Fuguent [5] is an early example that demonstrates the
feasibility of creating AI assistants and helping scientists

reduce their cognitive overheads and increase the depth of their
decision-making. Fugent is trained to inspect Poincaré plots,
which is the de facto visualization tool to understand turbu-
lent features in the plasma field of fusion reactors. Making
discoveries using Poincaré plots requires significant expertise
and experience because Poincaré plots are hard to interpret. In
many cases, scientists with significant experience can simply
follow their intuition. However, from a knowledge capture
perspective, that kind of status quo hampers cross-disciplinary
collaboration as well as reproducibility. Fugent used an Asyn-
chronous Advantage Actor-Critic (A3C) framework to learn
the sequences of how an expert scientist conducts their work.
Fugent also uses Convolution Neural Net (CNN) and Long-
Short Temporal Memory (LSTM). After training, Fugent can
perform the same type of exploration fully automatically on
behalf of the human scientist. The Fugent model takes only
about 20MBs to store, thus making this type of assistant easy
to share and archive.

With such early evidence of feasibility, there are three
opportunities worth further investigation. (1) Creation of a
community-shared, community-critiqued set of machinery so
that the visualization community can more easily engage do-
main scientists and help them train tasks-specific AI assistants.
(2) Creation of community-shared metrics or processes to
evaluate the quality and capability of potentially a large library
of task-specific agents. (3) Scaling an AI assistant for use
in parallel settings, either symmetrically (i.e. the same agent
doing the same task on different data) or heterogeneously (i.e.
different agents doing different tasks but collaborating with
each other).

B. Progressive Computation

The running time of visualization algorithms is notoriously
difficult to predict with any accuracy because the extent of
their operations is dependent on the values of the data. For
example, rendering time can vary based on how rays get
reflected in a scene [6] or how geometry is projected in image
space [7]. Contouring time depends on the geometric size
of the level sets extracted. The running time of many flow
algorithms can depend on the path of the flow such as whether
the flow makes loops or how many data partitions it crosses
[8].

Consequently, it is difficult to guarantee a visualization al-
gorithm will complete within NRT time constraints. Generally,
one has to limit the algorithm to far less than what is possible
to ensure these time constraints are met regardless of the form
of the data, which provides far less information than what is
possible.

A way to capture as much detail as possible while still guar-
anteeing time constraints is to design progressive visualization
algorithms. These algorithms start with a coarse but viable
solution and then iteratively refine. In this way, a solution can
be guaranteed but surplus time is effectively used to provide
more detail.

A visualization-relevant function that is already shown to
provide useful iterative refinement is 3D rendering. A general



approach to managing the infinite possible pathways light may
travel in a scene is to stochastically sample them [9], [10]. A
viable but noisy representation can be provided quickly, and
further ray samples may be accumulated to refine the result.

Because a progressive algorithm is used, the result may
be coarse or noisy. This may be rectified by further post
processing. AI methods in particular are a fruitful approach
to clean early iterations. For example, ML models have
been shown to accurately denoise images from undersampled
raycast images [11].

C. Interruptable Algorithms

The previous challenge (II-B) argued the need for the
dynamic adjustment in the amount of detail or precision a
visualization algorithm provides. Implicit in this discussion
is the need to start and stop iterations of the algorithm as the
time it takes is monitored. For this to work, it must be possible
to interrupt the algorithm as its runtime approaches the time
constraint.

Whenever the running time of an algorithm cannot be
bounded, there is a chance the algorithm is still running once
a given time constraint is hit. At this point, any result provided
by the algorithm is of no value. Any compute cycles spent after
the deadline are clearly wasted. Worse, these cycles are likely
taking valuable resources that are needed for a subsequent time
constraint as the system progresses.

To make the most of resource utilization in this dynamic
scheduling system, it is imperative that running computa-
tions be stopped once their result serves no purpose. Halting
a visualization algorithm, particularly one that operates on
parallel devices, can be non-trivial. Fast interruption can be
achieved with frequent polling and communication, but these
add overhead and impede the results under normal operation.
Designing an efficient stopping mechanism can be a difficult
operation in its own right.

D. Pervasive In Situ Processing

A major direction for current and future scientific inquiry
is the coupling of multiple facilities to answer scientific
questions. These facilities include high-performance comput-
ing (HPC), experimental and observational. These coupled
systems will provide the ability to answer many new scien-
tific questions. At the same time, these systems, which are
complex, distributed, and heterogeneous, will be a significant
challenge for the visualization tools of today. Further, to be
responsive to the constraints of NRT, the visualization tools
must be agile and capable of executing in several different
modes. This includes disk-based post-processing modes and
the large variety of in situ processing modes [12].

Post-hoc visualization tools that use bulk synchronous par-
allel processing are well established and can largely be consid-
ered a solved problem [13], [14]. Tools like ParaView [2] and
VisIt [3] are widely used in full production systems. In situ
processing paradigms have been an active area of research
and resulted in many tools and systems [15]–[20]. Despite
these efforts, production tools that are efficient and easily

deployed across such complex environments are lacking. At
present, most in situ visualizations tend to be problem-specific,
difficult to generalize, and require collaborations between
application and computer scientists and some bespoke software
components. One of the primary findings identified in recent
DOE workshop reports [21] is the need to overcome challenges
that block in situ processing from being pervasive.

In a prior work [22], we described three properties needed
by in situ visualization tools to become pervasive. Two of
these, agility, and elasticity, are particularly relevant to the
support of NRT analysis and visualization and are summarized
below. Agility is the ability of visualizations to be easily
used across a wide range of use cases. This includes multiple
scientific domains, both post-hoc and in situ processing modes,
and multiple interaction modes (e.g., notebooks, web, desktop
tools, etc). Elasticity is a concept first developed by the
cloud computing community where the efficient use of shared
resources is critical. In a NRT setting, visualization tasks must
be able to scale up and scale down to efficiently use available
resources. This includes elasticity over a given resource as
well as elasticity over a set of connected resources.

E. Time and Cost Models for Visualization Algorithms

The difficulty of determining the running time of a given
algorithm is discussed in section II-B. This challenge is
amplified when considering it from a system-wide perspective.
To meet the time constraints in a NRT setting there is a
cost. This cost can be measured in different ways, including
node-hours, watt-hours, etc. For visualization, the challenge
is driven by the cost differences between algorithm selection,
in situ placement strategy, data complexity, and heterogeneous
architectures (from HPC to edge). The choices made can have
dramatic differences in the resulting cost.

The challenge is right-sizing the cost of a visualization with
the NRT constraints. Meeting NRT constraints can involve
many different decisions. These include the type of algorithm
used, the amount and type of resource allocated, the amount
and fidelity of the data and the quality and/or amount of
resulting visualizations. If the cost to meet NRT constraints
is too high, the necessity of the visualization, or the imposed
time constraints are too aggressive, changes must be made.

To address these challenges, predictive cost models are
needed. These predictive cost models take as input a de-
scription of the data (amount, velocity, format, accuracy, etc),
amount and type of resource, execution strategy (e.g., post-
hoc, in situ, in transit, etc) and algorithm, and give a predicted
time for execution. Initial work has been done investigating
the predictive models for different visualization methods. This
includes in situ rendering algorithms [23], costs, in terms of
node-hours for in situ and in transit processing paradigms [24],
[25], and time to solution for both in situ and in transit
processing [26].

This space needs additional exploration to develop predic-
tive cost models that cover a much wider range of algorithm
types, execution modes, and amounts and types of data. Such
models could be used in a constrained optimization approach



to determine the data, resource, and execution strategy require-
ments to meet a given time budget. If for example, the resource
requirements are too high, or the data requirements are too
aggressive to meet the time constraints, decisions can be made
to adjust the priority, schedule appropriate resources, or adjust
expectations. In the context of a complex workflow which are
increasingly used to control scientific campaigns, these models
will be critical in balancing the required resources across a
wide variety of tasks that must be completed.

F. Data Refactoring

When NRT systems involve large volumes of data, data
refactoring becomes a key concern. Data refactoring trans-
forms data and often allows information to be represented with
less memory. This can be a necessary port of capturing data
in a NRT system.

Common general forms of data refactoring are the com-
pression techniques used to reduce the size of the data. Data
from physical systems generally require “lossy” techniques to
get a reasonable compression [27], which means that the error
introduced by the compression must be managed. This can be
done by expressing a maximum tolerance for the error where a
trade-off between error and compression ratio [28]. However,
if the loss can be expressed in terms of added uncertainty,
the techniques suggested in Section II-G can be applied. This
would allow the tolerance of the compression to be relaxed
and potentially increase the compression ratio achieved.

Other less general forms of refactoring are also possible.
The data collected in a NRT system may be in a more
verbose form than is strictly needed. In this case, analysis
might be done in parts where early parts will refactor the
data to a manageable format and other parts, perhaps offline,
will complete the desired visualization. A similar division of
operations is also a characteristic of workflows that combine
different forms of in situ visualization [29], [30].

G. Data Uncertainity

Vast amounts of data from simulations and experiments are
accompanied by uncertainty from data sources, complex HPC
workflows, and algorithms. This uncertainty is nontrivial to
analyze but cannot be ignored. Communication of uncertainty
is crucial to improving decision-making and increasing trust
in results [31]–[33]. Visualization of uncertainty in NRT is
particularly challenging, considering additional memory and
computational costs of analyzing uncertainty. For example,
representing uncertainty with the mean and width (or standard
deviation) doubles the amount of data. Uncertainty representa-
tion with more complex models, e.g., histograms, can further
increase memory and computational bottlenecks [34], [35].
Further, the existing brute-force Monte Carlo algorithms for
uncertainty visualization [36]–[38] cannot be accommodated
in NRT systems because of their high processing costs, slow
convergence, and poor scaling with increase in size and
dimensionality of data.

Thus, there are two opportunities relevant to uncertainty
visualization in the context of NRT that must be investigated.

(1) Finding efficient ways uncertainty can be visualized to
meet time constraints of NRT visualization systems. (2) De-
termining how uncertainty could be used as a decision-making
mechanism to achieve NRT extreme-scale visualization. A few
recent developments replaced expensive Monte Carlo sampling
with closed-form solutions [35], [39], [40] and combined them
with GPU acceleration [41] and AI [42] approaches for NRT
uncertainty rendering. The research in closed-form solutions,
hardware acceleration, and AI models for uncertainty visu-
alization, however, is in its very early stages. Further, even
though a few studies investigated how different probability
models (e.g. uniform, Gaussian, histogram) affect cost and
accuracy of visualization, little research has focused on how
models can be adaptively chosen to achieve NRT results with
maximal accuracy. Thus, research in development of efficient
uncertainty analysis algorithms and their adaptive use must be
pushed for trustworthy NRT visualization of large data.

III. DISCUSSION

In this paper, we have identified and discussed the top
7 challenges associated with near-real-time visualization of
large scientific data. These challenges include a wide array
of issues. While there are some similarities to the general
challenges associated with the visualization of large data, the
requirements for NRT interaction result in some very particular
challenges. Identifying and understanding these challenges
is critical in identifying areas where additional research is
needed.

The challenges presented highlight the multifaceted nature
of near-real-time visualization. As such, collaboration among
a range of sub-disciplines and co-design of solutions will
be critical to providing the necessary functionality for next-
generation science.

The intent of this paper is to offer our considered opinions
of the work that is required and provide a roadmap for
researchers and practitioners aiming to provide visualization
solutions for large data in time- and resource-constrained
environments. We also hope this paper serves as a starting
point for increased conversation on NRT visualization and to
foster collaboration among researchers to provide solutions for
the scientific community.
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[11] Attila T. Áfra. Intel® Open Image Denoise, 2024. https://www.
openimagedenoise.org.

[12] Hank Childs, Sean D. Ahern, James Ahrens, Andrew C. Bauer, Janine
Bennett, E. Wes Bethel, Peer-Timo Bremer, Eric Brugger, Joseph
Cottam, Matthieu Dorier, Soumya Dutta, Jean M. Favre, Thomas Fo-
gal, Steffen Frey, Christoph Garth, Berk Geveci, William F. Godoy,
Charles D. Hansen, Cyrus Harrison, Bernd Hentschel, Joseph Insley,
Chris R. Johnson, Scott Klasky, Aaron Knoll, James Kress, Matthew
Larsen, Jay Lofstead, Kwan-Liu Ma, Preeti Malakar, Jeremy Meredith,
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