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Level-Set Visualization
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Uncertainty Visualization of Level-Sets
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Uncertainty in data arises from various factors, including quantization errors,
approximations used in simulations, model uncertainty etc.

Spaghetti plot (climatology)
[Potter et al., 2009]

Probabilistic marching cubes (oceanology)
[Pöthkow et al., 2011, 
Athawale et al., 2021]

Fiber uncertainty (cosmology)
[Athawale et al., 2022]

Feature confidence level-sets 
(Molecular dynamics)

[Sane et al., 2020]

Contour/surface boxplots (climatology)
[Whitaker et al., 2013, Genton et al., 2014]

High 
uncertainty

region



Probabilistic Marching Cubes
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Spaghetti plot 
[Potter et al., 2009]

Probabilistic marching cubes 
[Pöthkow et al., 2011, Athawale et al., 2021]

+ Computationally efficient
+ Direct display of high/low 

uncertainty among isocontours
- Clutter and occlusion (severe in 3D)

+ Mitigates occlusion/clutter
+ Highlights high probability (red)

isocontour regions
- Computationally expensive (because of 

the required Monte Carlo sampling)



Probabilistic Marching Cubes
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Problem: Computational cost of probabilistic marching cubes limits its use and 
prevents its integration with visualization tools/software (e.g., ParaView, VisIt)

Existing Solutions: 
Acceleration by Deep Learning (Han et al., 2022) 
Up to 170× speedup, but requires training and limited to 
time-varying ensembles

FunMC2 filter: Acceleration using Many-Core GPUs (Wang et al., 2023)
Up to 396× speedup, but requires access to the GPU resources

Monte Carlo Machine-predicted
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Up to 170× speedup, but requires training and limited to 
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Monte Carlo Machine-predicted

Our Contribution: 
Data-driven methods (e.g., dimensionality reduction and correlation analysis) 
to reduce the amount of Monte Carlo sampling, and hence, achieve speedup



Probabilistic Marching Cubes
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where 𝑖, 𝑗 = 0, 1, 2, 3 

Draw S Monte Carlo samples from 𝓝(𝝁, 𝒄𝒐𝒗)
Level-crossing probability 𝐿𝐶𝑃 = )

*
if a level-set 

passes through C samples in a cell

Grid Cell

M instances of a 
random variable, 
e.g., ensemble 
members

Uncertainty modeling with multivariate Gaussian 
distribution, i.e., 𝓝(𝝁, 𝒄𝒐𝒗)

[Pöthkow et al., 2011, Athawale et al., 2021]
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distribution, i.e., 𝓝(𝝁, 𝒄𝒐𝒗)

[Pöthkow et al., 2011, Athawale et al., 2021]

‼ Sampling a 4D space is 
computationally expensive

(Each multivariate Gaussian sample is 4D 
representing data at four vertices of a grid cell)



Proposed Approach
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Draw S Monte Carlo samples from 𝓝(𝝁, 𝒄𝒐𝒗)
Level-crossing probability 𝐿𝐶𝑃 = )

* if a level-set 
passes through C samples in a cell

We optimize this step to 
reduce the level of sampling
and speedup computations 

(1) Eigenvalue decomposition technique 
- Extract important low-dimensional structures (e.g., top eigenvalues) 
- Perform sampling in a low-dimensional space (reduces the level of sampling)

(2) Adaptive probability model
- If strong correlation, use multivariate Gaussian sampling
- If weak correlation, use closed-form independent Gaussian models [Pöthkow et 

al., 2011, Athawale et al., 2021] (Closed-form solutions do not require sampling and 
are faster)



Eigenvalue Decomposition Technique
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N-D sample Mean Eigenvectors Eigenvalues Standard Normal Distribution 
(i.e.,                   )

𝐃~𝓝(𝝁, 𝒄𝒐𝒗) 𝝁
𝐙𝐢~𝓝(𝟎 , 𝟏)

Eigenvalue decomposition of 𝒄𝒐𝒗
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N-D sample Mean Eigenvectors Eigenvalues Standard Normal Distribution 
(i.e.,                   )

𝐃~𝓝(𝝁, 𝒄𝒐𝒗) 𝝁
𝐙𝐢~𝓝(𝟎 , 𝟏)

Eigenvalue decomposition of 𝒄𝒐𝒗

Our idea: We do not need to 
loop over all eigenvalues if 
only a few eigenvalues are 
significant relative to others
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N-D sample Mean Eigenvectors Eigenvalues Standard Normal Distribution 
(i.e.,                   )
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𝐙𝐢~𝓝(𝟎 , 𝟏)
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m significant eigenvalues)
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N-D sample Mean Eigenvectors Eigenvalues Standard Normal Distribution 
(i.e.,                   )

𝐃~𝓝(𝝁, 𝒄𝒐𝒗) 𝝁
𝐙𝐢~𝓝(𝟎 , 𝟏)

Eigenvalue decomposition of 𝒄𝒐𝒗

Original formula Approximate formula (loop of 
m significant eigenvalues)

Corresponds to 
sampling of m-D 
space, and 
hence, achieves 
a speedup if 
m<n



Adaptive Probability Model
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- Our idea: Use the Pearson’s correlation coefficient (𝜌) to adaptively 
decide a probability model

If max[𝜌 𝐷𝑖, 𝐷𝑗 ] < 0.2 ∀𝑖, 𝑗 and 𝑖 ≠ 𝑗
use independent model (no need of sampling, hence faster)

Else
use multivariate Gaussian model (slower) [we use the 
proposed eigenvalue decomposition approach]

𝜌 𝐷0, 𝐷1

𝜌 𝐷1, 𝐷2

𝜌 𝐷3, 𝐷2

𝜌 𝐷0, 𝐷3

𝜌 𝐷3, 𝐷1

𝜌 𝐷0, 𝐷2

- Covariance matrix 𝒄𝒐𝒗 captures the correlation among data Di. What if 
the data are independent? Can we do better?
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- Covariance matrix 𝒄𝒐𝒗 captures the correlation among data Di. What if 
the data are independent? Can we do better?

Drawback: Computation of pairwise correlation 𝜌 is costly, but it can be 
precomputed since it does not depend on the isovalue



Results (Synthetic Data): Eigenvalue Decomposition
Technique
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Spaghetti plot (Correlated 
uncertain data)

Ackley Function [Ackley, 1987]

Correlation (𝜌) Eigenvalues (𝝀) [Most information is in the first eigenvector]

n=4 m=1



Results (Synthetic Data): Adaptive Probability Model
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Spaghetti plot (Independent 
noise)

Ackley Function [Ackley, 1987]

Correlation Eigenvalues (𝝀) [Information is in all eigenvectors]

If 𝜌𝑚𝑎𝑥 < 0.2:
Use fast independent 
model 



Results (Wind Dataset)

- Our proposed 
methods (b and c) are 
faster than the original 
PMC (a)

- Most information is in 
the first eigenvector

- Highly correlated 
uncertain data
(So the both 
techniques provide a 
similar speedup)



Results (Beetle Dataset)

- Our proposed methods (b 
and c) are faster than the 
original PMC (a)

- Combined FunMC2 [Wang 
et al., 2023] with our 
methods on the Frontier 
supercomputer

- Most information is in the 
four eigenvector

- Highly correlated 
uncertain data
(So the both techniques 
provide a similar 
speedup)

27.18 seconds 16.72 seconds 17.09 seconds

Correlation precomputation 
time on a serial processor: 

94.6 minutes



Conclusion and Future Work

- Novel data-driven solutions to reduce computational overhead of uncertainty 
visualization of level-sets

- Eigenvalue decomposition and adaptive probability model techniques to make 
adaptive compute decisions for a faster speed

- Integration with the FunMC2 [Wang et al., 2023] filter to demonstrate the speedup on a 
Frontier supercomputer

- In the future, we will explore more data-driven methods for further acceleration and for 
various features, e.g., critical points, Morse complexes etc.
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