Data-Driven Computation of Probabilistic
Marching Cubes for Efficient Visualization
of Level-Set Uncertainty

Tushar M. Athawale®, Zhe Wang?, Chris R. Johnson?, and

David Pugmire!

1 — Oak Ridge National Laboratory, Oak Ridge, USA
2 — Scientific Computing & Imaging (SCI) Institute, University of Utah, Salt Lake City, USA

EuroVis 2024 Short Papers

g,OAK RIDGE

. National Laboratory

www.sci.utah.edu

WHERE WORDS FAIL,

VISUALLZATION
SEEAS

e~

EUROVIS
2024

Odense, DK



| evel-Set Visualization

[T
I 1

Deep Brain Stimulation (DBS) Temperature Field

Bioelectric-field Simulation



Uncertainty Visualization of Level-Sets

Uncertainty in data arises from various factors, including quantization errors,
approximations used in simulations, model uncertainty etc.
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Probabilistic Marching Cubes

Spaghetti plot Probabilistic marching cubes
[Potter et al., 2009] [Pothkow et al., 2011, Athawale et al., 2021]
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Level-Crossing Probability

+ Computationally efficient + Mitigates occlusion/clutter

+ Direct display of high/low + Highlights high probability (red)
uncertainty among isocontours isocontour regions

- Clutter and occlusion (severe in 3D) - Computationally expensive (because of

the required Monte Carlo sampling)



Probabilistic Marching Cubes

Problem: Computational cost of probabilistic marching cubes limits its use and
prevents its integration with visualization tools/software (e.g., ParaView, Vislt)

Existing Solutions:

Acceleration by Deep Learning (Han et al., 2022)
Up to 170x speedup, but requires training and limited to
time-varying ensembles
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FunMC2filter: Acceleration using Many-Core GPUs (Wang et al., 2023)

Up to 396x speedup, but requires access to the GPU resources
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Probabilistic Marching Cubes

Problem: Computational cost of probabilistic marching cubes limits its use and
prevents its integration with visualization tools/software (e.g., ParaView, Vislt)
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—— Deep Learning Inference with CPU

Existing Solutions:
Acceleration by Deep Learning (Han et al., 2022)

Up to 170x speedup, but requires training and limited to
time-varying ensembles
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FunMC2filter: Acceleration using Many-Core GPUs

(Wang et aI., 2023) Up to 396x speedup, but requires access to the
GPU resources
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Our Contribution:
Data-driven methods (e.g., dimensionality reduction and correlation analysis)
to reduce the amount of Monte Carlo sampling, and hence, achieve speedup




Probabilistic Marching Cubes

[Pothkow et al., 2011, Athawale et al., 2021]

2D Grid

Grid Cell

D5 D,

Uncertainty modeling with multivariate Gaussian
distribution, i.e., V' (u, cov)

Means: y; =% M _ dam
Covariance Matrix:
M
1
Covyj = 3r—7 Z(dlm — u)(dj" = u))
m=1

where i,j =0,1,2,3

D; = [d?,d}, ...,dM]

1

M instances of a
random variable,

Draw S Monte Carlo samples from NV (u, cov)
Level-crossing probability LCP = g if a level-set
passes through C samples in a cell

e.g., ensemble
members




Probabilistic Marching Cubes

[Pothkow et al., 2011, Athawale et al., 2021]

2D Grid

Grid Cell

D5 D,

Uncertainty modeling with multivariate Gaussian
distribution, i.e., V' (u, cov)

Means: y; =% M _ dam
Covariance Matrix:
M
1
Covyj = 3r—7 Z(dlm — u)(dj" = u))
m=1

where i,j =0,1,2,3

D; = [d?,d}, ...,dM]

'Y Sampling a 4D space is ,
computationally expensive

Draw S Monte Carlo samples from NV (u, cov)
Level-crossing probability LCP = g if a level-set

passes through C samples in a cell

(Each multivariate Gaussian sample is 4D
representing data at four vertices of a grid cell)




Proposed Approach

Draw S Monte Carlo samples from NV (u, cov)

We optimize this step to Level-crossing probability LCP = g if a level-set

reduce the level of sampling

, passes through C samples in a cell
and speedup computations

(1) Eigenvalue decomposition technique
- Extract important low-dimensional structures (e.g., top eigenvalues)
- Perform sampling in a low-dimensional space (reduces the level of sampling)

(2) Adaptive probability model
- If strong correlation, use multivariate Gaussian sampling
- If weak correlation, use closed-form independent Gaussian models [Psthkow et
al., 2011, Athawale et al., 2021] (Closed-form solutions do not require sampling and
are faster) 9




Eigenvalue Decomposition Technigque

Standard Normal Distribution
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Eigenvalue Decomposition Technigque

Standard Normal Distribution

N-D sample Mean Eig.envectors . .Eigenvalues (6. Zi~N'(0,1)
D~N(u, cov) u Eigenvalue decomposqlon of cov
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i—n Our 1dea: We do not need to

Dj=u;+ Z Vi jk?'S Z; loop over all' eigenvalues if
i=1 only a few eigenvalues are

significant relative to others
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Eigenvalue Decomposition Technigque

N-D sample Mean Ej t Eigenvalues Standard Normal Distribution
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Eigenvalue Decomposition Technigque

N-D sample Mean Eigenvectors Eigenvalues (S_tangf"rgv'\ég”q;’; Distribution
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i=1 i=1 hence, achieves

Original formula Approximate formula (loop of  a speedup if
m significant eigenvalues) m<n
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Adaptive Probability Model

- Covariance matrix cov captures the correlation among data D,. What if
the data are independent? Can we do better?

Do, Dy
DO p( ) D1

(DO:DZ)
p(Do, D3) p(D1,D2) . . .. :
- Our idea: Use the Pearson’s correlation coefficient (p) to adaptively
p(Ds, D1) decide a probability model
D3 p(0s0) Dy

If max[p(D;,D;)] <0.2Vi,jandi#j
use independent model (no need of sampling, hence faster)
Else

use multivariate Gaussian model (slower) [we use the
proposed eigenvalue decomposition approach]

14



Adaptive Probability Model

- Covariance matrix cov captures the correlation among data D,. What if
the data are independent? Can we do better?

Do, Dy
DO p( ) D1

(DO:DZ)
p(Do, D3) p(D1,D2) . . . :
- Our idea: Use the Pearson’s correlation coefficient (p) to adaptively
p(Ds, D1) decide a probability model
D3 p(0s0) Dy

If max[p(D;,D;)] <0.2Vi,jandi#j
use independent model (no need of sampling, hence faster)
Else

use multivariate Gaussian model (slower) [we use the
proposed eigenvalue decomposition approach]

Drawback: Computation of pairwise correlation p is costly, but it can be
precomputed since it does not depend on the isovalue
15



Results (Synthetic Data): Eigenvalue Decomposition
Technique

*

T4, =89.19  4,=0 =0 2= 0

Correlation (p) Eigenvalues (1) [Most information is in the first eigenvector]

Spaghetti plot (Correlated
uncertain data)
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Results (Synthetic Data): Adaptive Probability Model

Ackley Function [Ackley, 1987] 0 Pmax 1
. EE

noise) Correlation Eigenvalues (4) [Information is in all eigenvectors]

Spaghetti plot (Independent

0 LCP 1 0o Difference 1
S [

RMSE=0.0047
Max_error=0.035

If p,,0 < 0.2:
Use fast independent
model

17
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Results (Wind Dataset)

0 LCP 1 0 LCP 1 0 Difference 1 LCP 1 0 Difference 1
_:1 ﬂ EE _: EE

- Our proposed
methods (b and c) are
faster than the original

RMSE=0.0044 PMC (a)

Max_error=0.041

RMSE=0.0043
Max_error=0.040

(@) PMC (b) PMC (Eigenvalue-based) (c) PMC (Adaptive) _ i ; i
(Reference) 2.30X faster than the reference 2.24X faster than the reference MOSJ_[ mfor mation Is in
elg — pmax the first eigenvector
Highly correlated
uncertain data
(So the both
techniques provide a
similar speedu
= 12823.81 A, = 816.07 A3 =161.99 A4 =30.31 () Maximum Pearson’s P P)

(d) Eigenvalues correlation




Results (Beetle Dataset)

27.18 seconds 16.72 seconds

0 LCP 1 0 LCP 1 0 Difference 1
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Max_error=0.126

(f) PMC (9) PMC (Eigenvalue-based)
(Reference) 1.63X faster than the reference
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s
As =1.75e+9 Ag=094e+9 | 1;=0.51e+9 | Ag=0.25e+9

(i) Eigenvalues
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1P 1 o Diference 4
RMSE=0.0028,

Max_error=0.130
(h) PMC (Adaptive)
1.59X faster than the reference
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' '
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(i) Maximum Pearson’s
correlation
Correlation precomputation

time on a serial processor:
94.6 minutes

Our proposed methods (b
and c) are faster than the
original PMC (a)

Combined FunMC? [Wang
et al., 2023] with our
methods on the Frontier
supercomputer

Most information is in the
four eigenvector

Highly correlated
uncertain data

(So the both techniques
provide a similar
speedup)



Conclusion and Future Work

- Novel data-driven solutions to reduce computational overhead of uncertainty
visualization of level-sets

- Eigenvalue decomposition and adaptive probability model techniques to make
adaptive compute decisions for a faster speed

- Integration with the FunMC? [Wang et al., 2023] filter to demonstrate the speedup on a
Frontier supercomputer

- In the future, we will explore more data-driven methods for further acceleration and for
various features, e.g., critical points, Morse complexes etc.
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