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How Often Do We See Error Bars in 2D/3D Visualizations?
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Why Should We Visualize Uncertainty?
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The Visualization Pipeline
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Uncertainty Visualization for Trustworthy Analysis
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(a) High-resolution features (b) Visualization without uncertainty (c) Visualization with uncertainty
(Mean) (Histogram with 4 bins)

[Athawale et al., Fiber Uncertainty Visualization of Bivariate Data for Parametric and
Nonparametric Noise Models, IEEE VIS 2022]
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Uncertainty Visualization for Trustworthy Analysis

Without uncertainty visualization With uncertainty visualization
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[Athawale et al., Uncertainty Visualization of Marching Squares and Marching Cubes
Topology Cases, IEEE VIS 2021]
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Uncertainty Visualization: Top Research Challenge

[A. T. Pang, C. M. Wittenbrink, and S. K. Lodha, “Approaches to Uncertainty Visualization”, 1997]
[C. R. Johnson and A. R. Sanderson, “A Next Step: Visualizing Errors and Uncertainty”, 2004]

Challenge: Lack of theory in uncertainty visualization because of the complexities related to
uncertainty propagation, cost overhead, rendering, perception, cognition, decision-making
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The Visualization Pipeline
[K. Brodlie, R. A. Osorio, and A. Lopes, “A Review of Uncertainty in Data Visualization”, 2012]
[A. Kamal et al., “Recent Advances and Challenges in Uncertainty Visualization”, 2021]
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Our Approach to Uncertainty Visualization

Monte Carlo (easy but expensive) vS. Analytical (difficult but fast)
(State of the art)
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Uncertainty-Aware Direct Volume Rendering
(theoretical approach)

The teardrop function [Knoll et al., 2009]
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Uncertainty-Aware Direct Volume Rendering

(a) Ground truth (b) Mean
(512x512x1559) (64x64x195)
S

(@) Ground (b) Mean (c) Parametric  (d) Nonparametric L
truth [Sakhaee and Entezari, (Our contribution) b = # histogram
2017] [Athawale et al., 2020] _ | _ bins
(c) Parametric (d) Nonparametric
R,
akhaee and Entezari,

(ensemble dataset) 2017] [Athawale et al., 2020]

Visualization software: Voreen Osirix OBELIX dataset (http://medvis.org/datasets/)
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Uncertainty-Aware Volume Rendering: Interactive
Exploration

Uniform Noise Assumption

Mean-field: Uniform:
Mean per-vertex Mean and width of a
distribution per vertex
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Addressing Cost Overhead of Visualizing Uncertainty

Create scalable al g orithms The GPU CUDA (NVIDIA V100 graphics card)
and C++ openMP (Power9 CPU) implementations
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The computing resources are courtesy of the Summit Supercomputer at the Oak Ridge National Laboratory.

[Athawale et al., Fiber Uncertainty Visualization of Bivariate Data for Parametric and
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-~ National Laboratory




Addressing Cost Overhead of Visualizing Uncertainty

Data size = 680 MB

0 LCP 1 0 LCP 1 0 Difference 1
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EUROVIS 2024/ C. Tominski, M. Waldner, and B. Wang Short Paper

Data-Driven Computation of Probabilistic Marching Cubes for ~ RMSE=0.0028 Max_error=0.04

Efficient Visualization of Level-Set Uncertainty (a) Without (b) PMC (C) PMC (Eigenvalue-based)
uncertainty (Reference) 1.63X faster than the reference
27.18 seconds 16.72 seconds

Tushar M. Athawale 2 ), Zhe Wangl , Chris R. Johnson? -, and David Pugmirel

10ak Ridge National Laboratory, USA
2Scientific Computing and Imaging Institute, University of Utah, USA

Abstract
Uncertainty visualization is an important emerging research area. Being able to visualize data uncertainty can help scientists . m
improve trust in analysis and decision-making. However, visualizing uncertainty can add computational overhead, which can O elg_ ax

hinder the efficiency of analysis. In this paper, we propose novel data-driven techniques to reduce the computational require- E

ments of the probabilistic marching cubes (PMC) algorithm. PMC is an uncertainty visualization technique that studies how

uncertainty in data affects level-set positions. However, the algorithm relies on expensive Monte Carlo (MC) sampling for the A{

multivariate Gaussian uncertainty model because no closed-form solution exists for the integration of multivariate Gaussian. In 1 A ﬂ A‘
this work, we propose the eig lue decomposition and adaptive probability model techniques that reduce the amount of MC 2 $ 3 4
sampling in the original PMC algorithm and hence speed up the comp i Our proposed methods produce results that show

negligible differences compared with the original PMC algorithm d. ated through metrics, including root mean squared Re _'7"“ -

error, maximum error, and difference images. We demonstrate the performance and accuracy evaluations of our data-driven ez o Y ¥

methods through experiments on synthetic and real datasets. )
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Machine Learning for Uncertainty Visualization

Learn uncertainties pertinent to isosurfaces from a bunch of time steps and predict uncertainty for future time steps

Monte Carlo Our Machine-
[K. Pothkow, B. Weber, and H.-C. Hege, predicted result
“Probabilistic Marching Cubes”, 2011] (170X faster)
¥ OAK RIDGE [M. Han, T. M. Athawale, D. Pugmire, and C. R. Johnson, accepted at IEEE VIS 2022 short papers]
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Open Research Challenges

* Theoretical research in uncertainty visualization for 2D/3D/high-dimensional data

» Devising uncertainty-aware decision frameworks to perform optimal algorithmic
decisions, reduce uncertainty, and enhance quality of visualizations

« Handling cost overhead of visualizing uncertainty
« Effective rendering of uncertainty

» Assessing perception, cognition, and decision-making quality under uncertainty
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Uncertainty Visualization Workshop at IEEE VIS 2024!

You all are invited to submit full/short papers and posters, which will be archived on IEEE Xplore

Uncertainty
Visualization
2024

Menu

Home

Program

Call for Papers
Submission
Accepted Papers
Awards
Organization
Contact

Important Dates
Paper/Poster Submissions
June 26, 2024

Author Notifications
July 31, 2024

Camera-ready Paper Due
August 18, 2024
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IEEE Workshop on
Uncertainty Visualization: Applications, Techniques, Software, and Decision Frameworks
in conjunction with IEEE VIS 2024, Florida, USA

¢ IEEE

Uncertainty Visualization: Applications, Techniques, Software, and Decision

Frameworks

Uncertainty visualization has become an increasingly important topic given the ubiquity of noise in data and
computational processes. Although the research in uncertainty visualization has steadily progressed over the past
few years, this critical branch of visualization is still in its infancy given many difficult challenges (e.g., computation,
rendering, perception and decision-making) relevant to communication and understanding of uncertainty. One
important step to address these challenges is to provide a venue that attracts a wide range of experts across
many disciplines. A venue that allows experts in visualization, applications, applied math, perception, and
cognition to publish and discuss effective ways to convey and understand uncertainty is an important step in
advancing this critical area of research.The goal of the workshop is to bring together this multi-disciplinary group
to enlighten the visualization community in the following four areas: (1) use cases in diverse application domains
that can benefit from visualization of uncertainty (2) theory, techniques, and state-of-the-art software for
uncertainty visualization (3) Methods/workflows that enable robust decisions under uncertainty (4) development

of a future roadmap of uncertainty visualization research goals.

Venue:; St. Pete Beach, FL, USA

Submission deadline: June 26, 2024

Topics: Applications, Techniques,
Software, and Decision Frameworks

Chairs: Tushar M. Athawale, Chris R.
Johnson, Kristi Potter, Paul Rosen,
and David Pugmire



Thank you!

This research used resources of the Oak Ridge Leadership Computing Facility at the

Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC05-000R22725.

For any questions, please contact me at:
Email: tushar.athawale@gmail.com
Personal website: http://tusharathawale.info
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