

A Comparative Study of the Perceptual Sensitivity of Topological Visualizations to Feature Variations

Tushar M. AthawaleOak Ridge National Laboratory

Bryan Triana University of South Florida Tanmay Kotha University of South Florida

David Pugmire Oak Ridge National Laboratory

Paul Rosen

University of Utah

Melbourne, Australia

Color Maps Vs. Topological Visualizations

Persistence diagram

Application of Visualization Comparisons

VIS 2023

Can You Tell <u>Where</u> and <u>How Much</u> the Following Visualizations are Different?

Dataset 2

Color Map

Can You Tell Where and How Much the Following Visualizations are Different?

Perhaps it is difficult to notice differences!

Can You Tell <u>Where</u> and <u>How Much</u> the Following Visualizations are Different?

Reeb graph (topological skeleton of a scalar field)

Can You Tell <u>Where</u> and <u>How Much</u> the Following Visualizations are Different?

Reeb graph (topological skeleton of a scalar field)

Perhaps it is easier to notice differences!

We Investigate What Features Users Perceive When Comparing Visualizations

Studying perceptual sensitivity of visualizations is crucial to:

- gaining insight into limitations of visualization types
- enhancing visualization design
- choosing optimal visualization type

Related Work

- Factors contributing to effective visualization [Kosara et al., 2003], [Wijk, 2005], [North, 2006], [Munzner, 2009], [Quadri and Rosen, 2022]
- Perception

[Rogowitz et al., 1996], [Liu and Heer, 2009], [Moreland, 2009], [Zhou and Hansen, 2016], [Cooper et al., 2021], [Laidlaw et al., 2005], [Forsberg et al., 2009]

- Quantitative comparison of topological visualizations [Cohen-Steiner et al., 2007], [Edelsbrunner and Harer, 2010], [Morozov et al., 2013], [Sridharamurthy et al., 2020], [Pont et al., 2022], [Bollen et al., 2023], [Lan et al., 2023]
- Sensitivity analysis of functions and visualizations [Cacuci et al., 2005], [Saltelli et al., 2008], [Liu et al., 2014], [Chan et al., 2010], [Brecheisen et al., 2009]

Related Work

- Factors contributing to effective visualization [Kosara et al., 2003], [Wijk, 2005], [North, 2006], [Munzner, 2009], [Quadri and Rosen, 2022]
- Perception

[Rogowitz et al., 1996], [Liu and Heer, 2009], [Moreland, 2009], [Zhou and Hansen, 2016], [Cooper et al., 2021], [Laidlaw et al., 2005], [Forsberg et al., 2009]

- Quantitative comparison of topological visualizations [Cohen-Steiner et al., 2007], [Edelsbrunner and Harer, 2010], [Morozov et al., 2013], [Sridharamurthy et al., 2020], [Pont et al., 2022], [Bollen et al., 2023], [Lan et al., 2023]
- Sensitivity analysis of functions and visualizations [Cacuci et al., 2005], [Saltelli et al., 2008], [Liu et al., 2014], [Chan et al., 2010], [Brecheisen et al., 2009]

To our understanding, no prior work has evaluated feature perception sensitivity for topological visualizations

Evaluated Data and Techniques and Hypothesis

Data

Scalar fields sampled on 2D manifolds embedded in 3D

 $f: \mathcal{M} \to \mathbb{R}$

Data

Scalar field is represented as a mixture of Gaussians [Vidal et al., 2020] [Yan et al., 2021]

Data

Scalar field is represented as a mixture of Gaussians [Vidal et al., 2020] [Yan et al., 2021]

Gaussian?

A point on arc indicates a connected component

(b) Reeb graphs [Edelsbrunner and Harer, 2010]

(c) Persistence diagram [Cohen-Steiner et al., 2005]

A point on arc indicates a connected component

(b) Reeb graphs [Edelsbrunner and Harer, 2010]

VIS 2023

(c) Persistence diagram [Cohen-Steiner et al., 2005]

Method: Sensitivity Analysis for Visualizations

1D Example

Difficult to tell if variation A0 or A1 is closer to the baseline B

1D Example

Easier to tell if variation A0 or A1 is closer to the baseline B

User Evaluation for 3D Topological Visualizations

46 seconds remaining

Remember that you can move the camera to see a different angle and zoom in or out if looking at a 3D model. You can also change the level of detail if the slider is available.

(a) Users are presented baseline B in the centre and variations A_0 and A_1 on left and right,

(b) Users can change the level of detail and rotate

(C) Users need to visually select if visualization for variation A0 or A1 is closer to the visualization

Our Approach for Measuring Sensitivity

- Single experimental trial has an associated measure A' = |d(A0,B) d(A1,B)|(Hidden from users, but known to the designers of the experiment)
- Small A': We expect users to make random guess (close to 50% accuracy) Large A': We expect users to be more accurate
- Sensitivity: Plot selection accuracy Vs. A' and estimate the rate of change in accuracy

Experimental Setup and Results

Experimental Setup

- 102 non-expert participants, 24 experimental trials per participant, sensitivity analysis based on 102*24=2448 trials
- Each user was presented with tutorial and practice session to get familiar with visualization types and the features to look for
- Between-subject experiment with the following parameters across 24 experimental trials
 - 1 trial per 3D model
 - 6 trials per visualizations type: {color map, isocontour, Reeb graph, persistence diagram}
 - 12 trials per variation type: {position, scale}
 - 6 trials per A': $\{0.15, 0.30, 0.45, 0.60\}$
 - 8 trials per SNR value: {80,90,100}
 - 3 trials per NOF in the range: [2,9]
- Conducted study on Amazon Mechanical Turk (users with HIT approval rate > 95%)

Practice question for persistence diagram

Here's some tips to help: Here the diagonal line is your friend. First check the distribution of points along that diagonal and see if you can spot immediate similarities. Then check for dots further away from the diagonal. From this you should be able to gauge how similar a chart is with the baseline.

Results: Accuracy

					Accurac	$cy = N_{corr}/N_{trials}$	
	Method	Accuracy					
Positional variation		A' = .15	A' = .30	A' = .45	A' = .60	Overall	
	Color maps	62.3%	61.4%	56.6%	67.4%	64.0% (<i>p</i> < .001)	
	Isocontours	54.7%	59.3%	56.7%	56.0%	58.8% (<i>p</i> = .002)	
	Reeb graph	42.7%	47.4%	55.1%	58.9%	52.5% (p=.208)	
	diagrams	56.5%	66.2%	55.2%	50.6%	57.8% (<i>p</i> =.002)	
	Method	A' - 15	A' = 30	Accuracy $A' = 45$	4' - 60	Overall	
- Amplitude variation		л —.15	A = .50	A4J	A = .00	50 3 %	
	Color maps	48.8%	52.9%	60.3%	67.1%	(<i>p</i> < .001)	
	Isocontours	48.7%	49.4%	54.9%	62.5%	55.8% (<i>p</i> =.022)	
	Reeb graph	52.8%	48.1%	48.5%	53.9%	52.2% (p=.243)	
	diagrams	47.4%	57.5%	65.7%	81.3%	63.0% (<i>p</i> < .001)	

- A' = |d(A0,B) d(A1,B)|
- Our hypothesis: Small A': lower expected accuracy Large A': higher expected accuracy
- Our hypothesis statistically significant for all visualization types except for Reeb graphs

Results: Accuracy

					Accurac	$cy = N_{corr}/N_{trials}$	
	Method	Accuracy					
Positional variation		A' = .15	A' = .30	A' = .45	A' = .60	Overall	
	Color maps	62.3%	61.4%	56.6%	67.4%	64.0% (<i>p</i> < .001)	
	Isocontours	54.7%	59.3%	56.7%	56.0%	58.8% (<i>p</i> = .002)	
	Reeb graph	42.7%	47.4%	55.1%	58.9%	52.5% (p=.208)	
	diagrams	56.5%	66.2%	55.2%	50.6%	57.8% (<i>p</i> = .002)	
	Method			Accuracy		0	
-		A' = .15	A' = .30	A' = .45	A' = .60	Overall	
Amplitude variation	Color maps	48.8%	52.9%	60.3%	67.1%	59.3% (<i>p</i> < .001)	
	Isocontours	48.7%	49.4%	54.9%	62.5%	55.8% (<i>p</i> = .022)	
	Reeb graph	52.8%	48.1%	48.5%	53.9%	52.2% (<i>p</i> =.243)	
	Persistence diagrams	47.4%	57.5%	65.7%	81.3%	63.0% (<i>p</i> < .001)	

Reeb graphs displayed overall lower accuracy due to their discrete, highfrequency nature

Isocontour

Reeb Graph

Persistence Diagram

Results: Color Map Sensitivity

Results: Isocontour Sensitivity

Results: Reeb Graph and Persistence Diagram Sensitivity

Hypothesis was validated in the all cases!

Persistence diagrams (p < .001)

Observations and Implications

Hypothesis

Visualization Method	Position Sensitive	Amplitude Sensitive
Color map	Yes	Yes
Isocontours	Yes	No
Reeb graph	Yes	No
Persistence diagram	No	Yes

Visualization Method	Position Sensitive	Amp Sens
Color map	Yes	No
Isocontours	No	Mayl
Reeb graph	Yes	No
Persistence diagram	No	Yes

- No single visualization to rule them all!
- Need for multiview visualization or enhancement in existing visualization design for better portrayal of features and enhanced sensitivity

Observation

Limitations and Future Work

Task:

Limitation: Task of comparison of scalar fields. Future work: Study different tasks performed with scalar fields.

Participant Pool:

Limitation: Participant pool comprises mainly non-experts and can have effect on accuracy statistics. We note that experts may be influenced by familiarity bias (Dunning-Kruger effect [Kurger and Dunning, 1999]) Future work: Cover more diverse pool of participants.

Data and Features Evaluated:

Limitation: Data is modeled as a mixture of isotropic Gaussian functions on 2D manifolds, scale and position variation for evaluation.

Future work: Need study for non-isotropic Gaussian functions, 3D volumetric datasets, variations other than position and scale.

• Visualizations Evaluated:

Limitation: Our study is limited to color maps (viridis), isocontours, Reeb graphs, and persistence diagrams. Future work: Other visualization variations, e.g., planer Reeb graphs, Morse complexes, Multiview visualizations yet remain to be investigated.

Thank you for your attention!

This research is supported by a grant from the National Science Foundation (III-2316496) and by the U.S. Department of Energy (DOE) RAPIDS-2 SciDAC project under contract number DE-AC05-000R22725.

For any questions, please contact me at: Email: athawaletm@ornl.gov

