Advancing Comprehension of Quantum Application Outputs: A Visualization Technique

Priyabrata Senapati, Kent State University Tushar M. Athawale, Oak Ridge National Lab Dave Pugmire, Oak Ridge National Lab Qiang Guan, Kent State University

Quantum Computing Hardware Advances

We are going to see quantum computers with large number of qubits in the next few years.

Devel	opment	Roadma	もの AD Con target き	IBM Quantum				
	2019	2020	2021	2022	2023	2024	2025	Beyond 2026
Model Developers					Prototype quantum softw	are applications	Quantum software applica	tions
							Machine Learning Optimizati	on Natural Science Finance
Algorithm Developers		Quantum algorithm and a	pplication modules	\bigcirc	Quantum Serverless			
		Machine Learning Natur	al science Optimization Fin	ance		Intelligent orchestration	Circuit Knitting Toolbox	Circuit Libraries
Kernel Developers	Circuits	\odot	Qiskit Runtime 🔗					
				Dynamic Circuits 🥪	Threaded Primitives	Error suppression and miti	gation	Error correction
System Modularity	Falcon < 27 qubits	Hummingbird 🔗 65 qubits	Eagle < 127 qubits	Osprey 433 qubits	Condor 1,121 qubits	Flamingo 1,386+ qubits	Kookaburra 4,158+ qubits	
				\blacklozenge	\blacklozenge			
					Heron 133 qubits x p	Crossbill 408 qubits		

IBM quantum roadmap [https://research.ibm.com/blog/ibm-quantum-roadmap-2025]

Quantum Computing Hardware Advances

We are going to see quantum computers with large number of qubits in the next few years.

Development Roadmap													
	2019	2020	2021	2022	2023	2024	2025	Beyond 2026					
Model Developers					Prototype quantum software applications		Quantum software applications						
							Machine Learning Optimization	on Natural Science Finance					
Algorithm Developers		Quantum algorithm and a	oplication modules	\bigcirc	Quantum Serverless	_							
		Machine Learning Natura	al science Optimization Finance			Intelligent orchestration	Circuit Knitting Toolbox	Circuit Libraries					
Kernel Developers	Circuits	\bigcirc	Qiskit Runtime 🔗										
				Dynamic Circuits 📀	Threaded Primitives	Error suppression and miti	gation	Error correction					
System Modularity	Falcon 🔗 27 qubits	Hummingbird 🔗	Eagle 🔗 127 qubits	Osprey 433 qubits	Condor 1,121 qubits	Flamingo 1,386+ qubits	Kookaburra 4,158+ qubits						
					Heron 133 qubits x p	Crossbill 408 qubits							

IBM quantum roadmap [https://research.ibm.com/blog/ibm-quantum-roadmap-2025]

Major Challenge: Errors in Quantum Computing systems

Noise/error in quantum processors leads to issues of reproducibility and reliability of outputs

- Quantum decoherence: information loss from exposure to air molecules, electromagnetic waves etc.
- Gate errors: imperfect implementation of quantum gates
- Crosstalk error: when qubit states flip during CNOT operation on adjacent qubits.
- Measurement errors: erroneous measurement operations and the significant measurement times

Addressing Noise in Quantum Processors

Quantum Error Correction (QEC)

- Requires larger number of qubits

[Image credits to Sangkha Borah from OIST Graduate University]

Quantum Error Mitigation (QEM)

- Postprocessing to bring measurement results closer to preparation state
- Smaller qubit overhead

[Beisel, 2022 et al.]

Visualization to Understand Output Variability

Visualizations can help us understand noise in quantum application outputs

Limitation:

These visualizations do not scale well to systems with larger number of qubits!

Observed measurement distributions of a 4-qubit program

[Dasgupta and Humble, 2022]

Research Contributions

- We develop scalable visualization to distinguish between noisy and non-noisy states (falls under the category of error mitigation and error visualization)
- QML is our case study

Quantum Machine Learning (QML) For Case Study

- Variational quantum circuits (VQC) can result in lower learning and inference times compared to classical computing
- QML can be used in drug discovery, image processing, and natural language processing.
- Compressed MNIST images encodes onto amplitudes of 7 qubits using amplitude encoding.

Output in the form of basis state distribution: States {00: 0.02, 01: 0.4, 10: 0.5, 11: 0.08}

QML Inference Data For Our Analysis

- QML Inference is performed by using our existing trained QML model on unseen images.
- Each test image corresponds to one basis state distribution
- Main challenge: develop scalable visualization to understand variation across state distributions

Brute-Force Visualization Is Not Scalable

Direct/mean visualization of basis states does not reveal useful information and is not scalable

DGE

National Laboratory

Basis state distribution per image

Our Visualization Approach

Functional Boxplot for Noise Visualization

Functional Boxplot for Noise Visualization

KL Distance Visualization

Lower KL distance

Larger KL distance

$$D_{ ext{KL}}(P \parallel Q) = \sum_{x \in \mathcal{X}} P(x) \logiggl(rac{P(x)}{Q(x)}iggr)$$

(larger KL distance corresponds to yellow lines, therefore, indicating more noise)

Visualization of pairwise KL distance

Results on 7-Qubit Quantum Machines

Conclusion and Future Work

- Our work (functional boxplots and KL distance) provides a ground for scalable quantum noise visualization
- Our proposed approach can help users visually identify noisy and non-noisy basis states.
- In the future, we would like to test our approach on processors with large number of qubits, e.g., 400+ qubits.
- Ultimately, we would like to investigate how our visualizations can be utilized for mitigating noise in quantum application outputs.
- Our position paper on our perspectives is accepted at the DOE ASCR workshop on Basic Research Needs in Quantum Computing and Networking.

Acknowledgements

- This work was partially supported by NSF 2212465, 2230111, 2217021 and 2238734.
- This work was supported in part by the U.S. Department of Energy (DOE) RAPIDS SciDAC project under contract number DE-AC05-000R22725.

Thank You

References

- 1. Lov K Grover. 1996. A fast quantum mechanical algorithm for database search. In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing. 212–219.
- 2. IBM. 2020. IBM's Roadmap For Scaling Quantum Technology. https://www.ibm.com/blogs/research/2020/09/ibm-quantum-roadmap/ (2020). Accessed: 2020-09-30.
- 3. Scott Johnstun and Jean-François Van Huele. 2021. Understanding and compensating for noise on IBM quantum computers. American Journal of Physics 89, 10 (2021), 935–942.
- 4. A Yu Kitaev. 1997. Quantum computations: algorithms and error correction. Russian Mathematical Surveys 52, 6 (1997), 1191.
- Robert McGill, John W Tukey, and Wayne A Larsen. 1978. Variations of box plots. The American Statistician 32, 1 (1978), 12– 16.
- 6. Benjamin Nachman, Miroslav Urbanek, Wibe A de Jong, and Christian W Bauer. 2020. Unfolding quantum computer readout noise. npj Quantum Information 6, 1 (2020), 84.
- 7. Shaolun Ruan, Yong Wang, Weiwen Jiang, Ying Mao, and Qiang Guan. 1912. Vacsen: A visualization approach for noise awareness in quantum computing. IEEE Transactions on Visualization and Computer Graphics (1912).

References (contd.)

- 8. Hanrui Wang. 2021. Torch Quantum. https://github.com/mit-han-lab/ torchquantum, commit = 4f57d6a0e4c030202a07a60bc1bb1ed1544bf679.
- Rahaf Youssef. 2020. Measuring and Simulating T1 and T2 for Qubits. Technical Report. Fermi National Accelerator Lab.(FNAL), Batavia, IL (United States).
- 10. Gokul Subramanian Ravi, Kaitlin Smith, Jonathan M Baker, Tejas Kannan, Nathan Earnest, Ali Javadi-Abhari, Henry Hoffmann, and Frederic T Chong. 2023. Navigating the dynamic noise landscape of variational quantum algorithms with QISMET. In Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2. 515–529.
- 11. Havlíček, V., Córcoles, A. D., Temme, K., Harrow, A. W., Kandala, A., Chow, J. M., & Gambetta, J. M. (2019). Supervised learning with quantumenhanced feature spaces. Nature, 567(7747), 209-212.
- 12. Dasgupta, S., & Humble, T. S. (2022, October). Assessing the stability of noisy quantum computation. In Quantum Communications and Quantum Imaging XX (Vol. 12238, pp. 44-49). SPIE.
- **13.** Cho, A. (2020). No Room For Error.
- 14. <u>https://en.wikipedia.org/wiki/Functional_boxplot</u>
- 15. https://www.statsmodels.org/dev/generated/statsmodels.graphics.functional.fboxplot.html