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Background: Probabilistic Marching Cube [Pothkow et al. 2011]

Spaghetti plot Probabilistic marching cubes

Position Uncertainty of Level-Set

o Uncertainty of ensemble has been extensively studied via

analyzing positional uncertainty of level-set visualizations

Probabilistic Marching Cube

Figure 2: Spaghetti plot vs. probabilistic marching cubes for uncer-
tainty visualization of level sets.

o Monte Carlo sampling of multivariate Gaussian distributions [25]

o Nonparametric distributions [24] for uncertainty quantification

l!Computational Challenging due to the expensive Monte Carlo sampling



Our Contributions

First Deploy Deep Learning Techniques to Uncertainty Visualization

o First research deploys deep learning techniques to uncertainty visualization to predict the positional uncertainty

of level sets for uncertain time-varying scalar ensemble data
Accurate and Fast

o Predict the level-crossing probabilities accurately
o Up to 170X faster than the original probabilistic marching cube
algorithm with serial computations

o Up to 10X faster than the parallel computations



Our Method: Training Data Generation

Training Prediction




Our Method: Training Data Generation
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Y = V0, Vi Vi ]
wherei =0,1, 2,3

Time step ¢ M is the number of ensemble members




Our Method: Training Data Generation

Means:
u = |po, pq, Ha, s3]

Covariance Matrix:

M
1
Cov;; = W —1 Z(ylm Sy )
m=1

where i,j=0,1, 2,3
M i1s the number of ensemble members

Drawing r samples from multivariate Gaussian distribution

LCPp = % if a level set passes through k samples




Our Method: Training Data Generation

One training sample represents one grid cell with a one-dimensional vector of size 16
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Our Method: Network Architecture
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Results: predicted LCP are indistinguishable from the ground truth

Level-crossing Probability
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(a) Wind data set at time step of 28 with iso-value 0.3

(b) Temperature data set at time step 22 with iso-value 0.8



esults: predicted LCP are indistinguishable from the ground truth
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Results: Faster than the Original Probabilistic Marching Cubes
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Results: Faster than the Original Probabilistic Marching Cubes
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Conclusions

o First assessment of DL to uncertainty: We propose the first assessment of DL to

uncertainty visualization to predict the positional uncertainty of level sets for uncertain

time-varying scalar ensemble data

o Accurate: Our method can predict the level-crossing probabilities accurately

o Fast: Our method is up to 170X faster than the original probabilistic marching cubes

technique with serial computations and up to 10X faster compared to the parallel version



Future Work

o 3D: Extend our method to 3D

o Flexibility: Enhance the flexibility of prediction for varying
1sovalues
o Generalization: Investigate more generalized DL method

across varying datasets
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