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Background: Probabilistic Marching Cube [P𝒐̈thkow et al. 2011]

o Uncertainty of ensemble has been extensively studied via 

analyzing positional uncertainty of level-set visualizations

Position Uncertainty of Level-Set

Probabilistic Marching Cube

o Monte Carlo sampling of multivariate Gaussian distributions [25]

o Nonparametric distributions [24] for uncertainty quantification

‼Computational Challenging due to the expensive Monte Carlo sampling



Our Contributions

o First research deploys deep learning techniques to uncertainty visualization to predict the positional uncertainty 

of level sets for uncertain time-varying scalar ensemble data

First Deploy Deep Learning Techniques to Uncertainty Visualization

Accurate and Fast

o Predict the level-crossing probabilities accurately 

o Up to 170X faster than the original probabilistic marching cube 

algorithm with serial computations

o Up to 10X faster than the parallel computations 



Our Method: Training Data Generation  
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Our Method: Training Data Generation  

Time step t

𝑌" 𝑌#

𝑌) 𝑌*

𝑌# = [𝑦#$, 𝑦#%, … , y&'] 
where 𝑖 = 0, 1, 2, 3 
M is the number of ensemble members



Our Method: Training Data Generation  
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where 𝑖, 𝑗 = 0, 1, 2, 3 
M is the number of ensemble members

Drawing r samples from multivariate Gaussian distribution
     LCP	𝑝 = 5

6 if a level set passes through k samples



Our Method: Training Data Generation  

One training sample represents one grid cell with a one-dimensional vector of size 16

[𝜇$, 𝜇%, 𝜇/, 𝜇0, 𝜎$/, 𝜎%/, 𝜎//, 𝜎0/, 𝐶𝑜𝑣$,%, 𝐶𝑜𝑣$,/, 𝐶𝑜𝑣$,0, 𝐶𝑜𝑣%,/, 𝐶𝑜𝑣%,0, 𝐶𝑜𝑣/,0, 𝑠, 𝑝]
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Our Method: Network Architecture



Results: predicted LCP are indistinguishable from the ground truth
 



Results: predicted LCP are indistinguishable from the ground truth
 



Results: Faster than the Original Probabilistic Marching Cubes
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Results: Faster than the Original Probabilistic Marching Cubes
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Conclusions

o First assessment of DL to uncertainty: We propose the first assessment of DL to 

uncertainty visualization to predict the positional uncertainty of level sets for uncertain 

time-varying scalar ensemble data

oAccurate: Our method can predict the level-crossing probabilities accurately

o Fast: Our method is up to 170X faster than the original probabilistic marching cubes 

technique with serial computations and up to 10X faster compared to the parallel version



Future Work

o3D: Extend our method to 3D

oFlexibility: Enhance the flexibility of prediction for varying 

isovalues

oGeneralization: Investigate more generalized DL method 

across varying datasets 
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