Tushar Athawale, Scientific Computing & Imaging (SCI) Institute, University of Utah

Advisor: Dr. Chris R. Johnson

Outline

- Need for uncertainty visualization
- Uncertainty visualization for level sets
 - Marching squares/cubes algorithm in uncertain data, e.g., ensemble simulations
- Other applications of uncertainty visualization
 - Morse complex visualizations for ensembles
 - Direct volume rendering using ray casting
 - Deep brain stimulation (DBS) imaging
 - Electrodcardiographic Imaging (ECGI)
- Conclusion and future work

Morse complex visualization

DBS

Why Visualize Uncertainty? [Johnson and Sanderson, 2004]

Minimize risks associated with scientific decisions

[Brodlie et al., 2012]

Why Visualize Uncertainty?

Can you identify a tumor boundary?

Whole brain atlas: http://www.med.harvard.edu/AANLIB/home.html

Why Visualize Uncertainty?

Can you identify a tumor boundary?

Whole brain atlas: http://www.med.harvard.edu/AANLIB/home.html

Data Reduction and Distributions

Distributions: Hixel representation/ in-situ statistical summaries for large-scale data [Thompson et al., 2011, Lehmann and Jung, 2014, Hazarika et al., 2018]

Ensemble Data: Multiple simulations for PDE solutions (Store min/max, Approximate distributions) from samples)

Hixel representation: Storing a histogram/probability distribution at each vertex of a scalar grid

Data Reduction and Distributions

Ground truth

Mean

Memory consumption = $100^{*}X$

Memory consumption = X

Brick size = 100

Uncertainty Quantification (Abstract Statistical Approach)

Monte Carlo (easy but expensive) VS. Analytical (difficult but fast)

Other Uncertainty Vis Applications

Conclusion & FutureWork

8

The Visualization Pipeline

Level-Set Extraction in Uncertain Data

- Level sets and data uncertainty
- Marching squares/cubes algorithm in certain vs. uncertain data (our contribution!)
- Results

Level-Set Visualization

Deep Brain Stimulation (DBS)

Bioelectric-field Simulation

10

Temperature Field

Level-Set Extraction

The inverse problem: The level-set S corresponding to the isovalue k is given by:

 $S = \{x \in \mathbb{R}^n | f(x) = k\}$, where $\ f: \mathbb{R}^n \to \mathbb{R}$

-38 38 37 39 3

Input: Scalar Field

Output: Level-Sets Visualization

Level-Set Extraction in Uncertain Data

Research Question: Analysis of topological and geometric variations in level sets for uncertain scalar field

67	57	- 5	6 6	ie (57 5	9 62	66	70	73	73	70	64	67 4	18 3	38 3	1 2	T.
18	48	48	1 4i	9 S	50 5 3	3 57	61	65	69	69	66	60	62	42	34	27 :	24
>	41	41	41	4.	3 45	48	53	58	62	63	60	55	47	30	32	27	2
3	36	36	36	36	37	40	44	48	53	55	63	50	44	38	33	29	
38	3 3	7	35	34	33	34	37	41	46	48	48	46	43	38	35	33	5
42	36	9 3	36	32	30	29	30	33	38	41	42	42	41	31	э з	73	8
5	43	3	7	32	27	23	22	24	29	33	36	38	3 31	в 3	38 3	38	31
	46	39	з	2	25	20	18	19	24	28	3:	23	б З	57	38	39	25
4	9	41	33	3	26	20	16	17	22	27	з	1 3	34	36	38	30	
51	4	14	36	2	28 2	22	19	19	24	29) 3	33	35	37	38	31	8
2	40	5	38	з	1 2	26 2	23	24	28	33	3	36	38	38	3	8 3	37
	47	4	11	34	2	92	27	28	33	3	7	40	41	4	0	39	57
ł	50	4.	4	39	35	53	4	35	40	4	з	46	46	, Z	ł5	43	
54	4	50		45	43	4	2	44	48	5	2	54	53	3	51	48	5
i9	4	55	5	1	49	49	Э	51	55	Ę	59	60	6	0	57	5	3
?	58	8	55	5	52	52	2	54	59	(63	64	4	63	6	o	5

Input: Noisy Scalar Field

57 57 56 56 57 59 62 66 7 73 73 70 64 / 57 / 48 88 3× 27
18 48 48 49 50 53 57 61 65 69 60 68 90 57 47 34 27 24
41 41 41 43 45 48 53 58 62 63 50 55 47 \$9 32 27 2
36 36 36 36 37 40 44 48 53 55 53 80 44 38 33 29
38 37 35 34 33 34 37 41 46 48 48 46 43 38 35 33
42 39 36 32 80 29 30 33 38 41 42 42 41 39 37 36
E 43 37 30 07 03 00 04 08 33 36 38 30 38 38 38 38
46 89 32 25 20 18 19 24 28 32 35 37 38 39
49 4 33 26 20 16 17 22 27 31 34 36 38 39
5 44 36 28 22 19 19 24 29 33 35 37 38 38
44 50 22 15 19 24 25 55 57 56 56
2 46 38 3 26 23 24 28 33 36 38 38 38 37
41 40 34 9 21 28 33 31 41 41 43 39 3
40 44 39 35 34 35 49 43 46 46 45 43
54 50 45 43 42 44 48 52 54 53 51 48
19 55 51 49 49 51 55 59 60 60 57 53
59 55 52 52 54 50 62 64 62 00 E
00 00 02 02 04 09 03 04 03 00 0

Output: Level-Sets Visualization May not represent the true level sets!

Uncertainty Visualization of Level Sets

Visualization of Level-Sets in Uncertain Data

Spaghetti plots [Potter et al., 2009]

Visualization software: The WeaVER [Quinan and Meyer, 2016]

> The visualization of uncertain temperature field isovalue (k) = 60° F

Probabilistic marching cubes [Pöthkow et al., 2011]

Contour/Surface box plots [Whitaker et al., 2013; Genton et al., 2014]

Introduction

Uncertainty Visualization of Level Sets

Marching Squares/Cubes Algorithm for Level-Set Extraction

[Lorenson and Cline, 1987]

Google Scholar

Bill Lorensen

GE Global Research (retired) Verified email at nycap.rr.com - <u>Homepage</u>

TITLE

Marching cubes: A high resolution 3D surface construction algorithm WE Lorensen, HE Cline ACM siggraph computer graphics 21 (4), 163-169

Object-oriented modeling and design

J Rumbaugh, M Blaha, W Premerlani, F Eddy, WE Lorensen Prentice-hall 199 (1)

The visualization toolkit: an object-oriented approach to 3D graphics WJ Schroeder, B Lorensen, K Martin Kitware

	Sollow	Cited by	Cited by VIE			
			All	Since 2014		
		Citations	36273	5984		
		h-index	19	12		
		i10-index	24	14		
CITED BY	YEAR			1700		
15483	1987			1275		
		- 111		850		
11730	1991			425		
3994	2004	2012 2013 201	4 2015 2016 2017 20	18 2019 0		

Marching Squares Algorithm (MSA)

- For each cell:
 - Extract isocontour topology (Which cell edges are crossed?)
 - Compute geometry (Where on the cell edge?)

49 51 55 59 60 60 57 53 55 52 52 54 59 63 64 63

Bilinear interpolation: prediction of unknown data values within a grid cell

MSA: The Topology Step (which edges?)

Data $(d_{xy}) >$ Isovalue (k) : Positive vertex (+) Data $(d_{xy}) <$ Isovalue (k) : Negative vertex (-)

Bilinear interpolation function:

f: $[0,1]x[0,1] \rightarrow R$ f(x,y) = ax + by + cxy + d (the equation of hyperbola!), where a = d₁₀ - d₀₀, b = d₀₁ - d₀₀ c = d₀₀ + d₁₁ - d₀₁ - d₁₀, d = d₀₀

MSA: The Geometry Step (where on the edge?)

Marching Cubes Algorithm (MCA): **Topological Cases**

Other Uncertainty Vis Applications

Conclusion & FutureWork

The Stag Beetle dataset is courtesy of Vienna University of Technology https://www.cg.tuwien.ac.at/research/vis/datasets/

Marching Cubes Algorithm in Action!

https://www.youtube.com/watch?v=LfttaAepYJ8

Introduction

Uncertainty Visualization of Level Sets

Marching Squares/Cubes Algorithm for Level-Set Extraction in Uncertain Data

MSA for Uncertain Data (our contribution!)

- Topological (which edges) uncertainty resolution
- Geometric (where on the edges) uncertainty resolution

MSA: Topological Uncertainty

+ : if data $d_{xy} > k$ - : if data $d_{xy} < k$

MSA: Topological Uncertainty

+ : if data $d_{xy} > k$: if data $d_{xy} < k$

MSA: Topological Uncertainty Resolution

Uncertainty Visualization of Level Sets

MSA Ambiguous Case: Topological Uncertainty Resolution

k = isovalue $D_{xy} = Uncertain Data$ $pdf_{Dxy} = Probability distribution of D_{xy}$

Conclusion & FutureWork

Introduction

Uncertainty Visualization of Level Sets

Results: Visualization of Uncertain Level Sets

Isosurface Extraction in Uncertain Data

Tangle function (synthetic data)

Ground truth

Mean Field

[Athawale and Entezari, 2013; Athawale et al., 2016]

(Visualization software: The Geomview, Developer: The Geometry Center at the University of Minnesota)

Isosurface Extraction in Uncertain Data

Mean

Bonsai tree (real data)

Nonparametric

Introduction

Uncertainty Visualization of Level Sets

MSA Ambiguous Case Resolution in Uncertain Data

Concentric circles (synthetic data)

Other Uncertainty Vis Applications

Conclusion & FutureWork

Isocontour Visualizations (Kàrmàn Vortex Street)

		1
	_	0.95
\mathcal{L} \mathcal{L} \mathcal{L}	-	0.9
	-	0.85
	-	0.8
Probabilistic	-	0.75
	-	0.7
	-	0.65
	-	0.6
	-	0.55
		0.5
Probabilistic		

The flow simulation dataset is courtesy of the Gerris project [Popinet, 2003]

(Our Method)

Morse Complex Visualizations

flows of a scalar field

The Ackley function [Ackley D. H., 1987]

Topological descriptors, which provide an abstract representation of gradient

Morse complex visualization of the Ackley function

Uncertainty Visualization of Morse Complexes

Visualize agreement/certainty and d Morse complexes for ensembles

Ensemble of Morse Complexes

T. M. Athawale, D. Maljovec, C. R. Johnson, V. Pascucci, and B. Wang; **Uncertainty Visualization of 2D Morse Complex Ensembles using Statistical Summary Maps** (in progress).

Visualize agreement/certainty and disagreement/uncertainty among abstract

Agreement Regions

Uncertainty Regions

Interactive PDF Queries for Uncertain Regions

Uncertainty-Aware Morse Complex Visualizations

Direct Volume Rendering of Uncertain Data

The teardrop function [Knoll et al., 2009]

[Liu et al., 2012; Sakhaee and Entezari, 2017]

DVR of Uncertain Data (Nonparametric)

The teardrop function

T. M. Athawale, B. Ma, E. Sakhaee, L. Zhou, C. R. Johnson, and A. Entezari; Nonparametric Models for Direct Volume **Rendering of Uncertain Data Using Multidimensional Transfer Functions** (in progress)

Groundtruth

Parametric

Nonparametric (New)

Osirix OBELIX dataset (http://medvis.org/datasets/)

DVR of Uncertain Data (2D Transfer Functions)

Gradient magnitude

Intensity

[Kniss et al., 2002]

Gradient magnitude

Probability density of S: The material for the sample is most likely to be Enamel

Reduce

A Statistical Framework for Visualization of Positional Uncertainty in Deep Brain Stimulation Electrodes

Tushar Athawale¹, Ph.D. (<u>tushar.athawale@sci.utah.edu</u>); Kara Johnson²; www.sci.utah.edu Chris R. Butson², Ph.D.; and Chris R. Johnson¹, Ph.D. ¹Scientific Computing & Imaging (SCI) Institute, University of Utah, Salt Lake City, USA; ²Department of Biomedical Engineering, University of Utah, Salt Lake City, USA

Deep Brain Stimulation (DBS)

• An FDA-approved neurosurgical procedure for treating patients with movement disorders, e.g., Parkinson's and dystonia.

- The effectiveness of DBS depends upon physician's knowledge regarding precise DBS electrode positions in the patient brain.
- The role of post-operative DBS imaging:
 - Understand DBS electrode positions in the patient brain.
 - Mitigate the uncertainty in DBS electrode positions arising from mechanical inaccuracies of stereotactic frames [1] and brain shift [2].

Problem with Post-Operative DBS imaging

 The finite resolution of post-operative imaging limits our knowledge of exact electrode positions in the patient brain.

Post-Operative Imaging Uncertainty

- slices.
- quantified spatial uncertainty.

• **Given:** A finite-resolution CT scan of implanted DBS electrodes, e.g., the image above captures data on 11

Goal: To quantify the spatial uncertainty in DBS electrodes for their finite-resolution imaging and visualize the

Approach: (a) Compute electrode geometry in closed form, (b) Map electrode geometry to a highresolution electrode image (with electrodes out of patient brain), (c) Draw low-resolution samples from a highresolution electrode image, (d) Compare low-resolution samples with the patient image [3].

Electrode-Center Spatial Uncertainty Visualizations

Conclusion

We show that the uncertainty in DBS electrode positions is significant in post-operative imaging,

e.g., 0.49 mm average spatial uncertainty for 0.45x 0.45x1 mm³ resolution. Further, we integrate DBS computational modeling pipeline with our electrode uncertainty visualizations for accurate prediction of patient response to therapy.

Acknowledgements

This project is supported in part by the National Institute of General Medical Sciences of the National Institutes of Health under grant number P41 GM103545-18.

References

[1]: Maciunas RJ; Galloway RL, and Latimer JW. The application accuracy of stereotactic frames. Neurosurgery, vol. 35, no. 4, pp. 682-694, 1994. [2]: Halpern CH., Danish SF, Baltuch GH, and Jaggi JL. Brain shift during deep brain stimulation surgery for Parkinson's disease. Stereotact Funct Neurosurg, vol. 86, no. 1, pp. 37-43, 2008.

[3]: Athawale T, Johnson K, Butson CR, and Johnson CR. A statistical framework for visualization of positional uncertainty in deep brain stimulation electrodes. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, vol.7, no. 4, pp. 438-449, 2019.

Uncertainty Visualization for Domain-Specific Data

T. M. Athawale, D. Njeru, J. France, and C. R. Johnson; Quantifying and Visualizing Uncertainty for Source Localization in Electrocardiographic Imaging (in progress)

Conclusion & FutureWork

Positional uncertainty in sources of arrhythmia for noisy ECG recordings

Positional Likelihood of Sources of Arrhythmia

Conclusions

- Uncertainty visualizations are important for avoiding misleading interpretations regarding the underlying data
 - Level sets
 - Deep brain stimulation imaging
 - Morse complex visualizations
 - Direct volume rendering
 - Electrocardiography imaging

Statistical methods for uncertainty quantification

Monte Carlo vs. Analytical

Methods for uncertainty visualization

- Color mapping proportional to the level of confidence/uncertainty
- Interactive probability distribution queries
- Derive uncertainty volumes and visualize them using isosurfaces/direct volume rendering

Future Work

- Visualization algorithms, e.g., topological analysis, for uncertain input data Uncertainty visualization for domain-specific data
- Machine learning and uncertain data
- Value of uncertainty visualizations (are they informative or confusing to a user?)

Publications

- (TVCG), Special Issue on IEEE VIS Conf, vol.25, no. 1, pp. 1163-1172, Jan. 2019.
- Biomedical Engineering: Imaging & Visualization, pp. 1-12, Oct. 2018.
- *Conf*, vol.22, no.1, pp.777-786, Jan. 2016.
- T. M. Athawale and A. Entezari.; Uncertainty Quantification in Linear Interpolation for Isosurface vol.19, no.12, pp.2723-2732, Dec. 2013.

• T. M. Athawale and C. R. Johnson; Probabilistic Asymptotic Decider for Topological Ambiguity Resolution in Level-Set Extraction for Uncertain 2D Data, IEEE Transactions on Visualization and Computer Graphics

• T. M. Athawale, K. A. Johnson, C. R. Butson, and C. R. Johnson; A Statistical Framework for Visualization of **Positional Uncertainty in Deep Brain Stimulation Electrodes.**, Computer Methods in Biomechanics and

• T. M. Athawale, E. Sakhaee, and, A. Entezari; Isosurface Visualization of Data with Nonparametric Models for Uncertainty, IEEE Transactions on Visualization and Computer Graphics (TVCG), Special Issue on IEEE VIS

Extraction, IEEE Transactions on Visualization and Computer Graphics (TVCG), Special Issue on IEEE VIS Conf,

Thanks to SCI Collaborators!

Dr. Chris Johnson (advisor)

Kara Johnson (DBS project)

Dr. Chris Butson (DBS project)

Dr. Dan Maljovec (Morse complex project)

Dr. Bei Wang (Morse complex project)

Dr. Valerio Pascucci (Morse complex project)

Dr. Liang Zhou (Direct volume rendering project)

Dr. Feng Wang (VIS research team member)

Dr. Sarang Joshi (Statistical analysis & Funding proposals)

Mengjiao Han (VIS research team member)

Thank you for your attention!

This research is supported by the National Institute of General Medical Sciences of the National Institutes of Health (NIH-NIGMS) under grant number P41 GM103545-18 and by the Intel Parallel Computing Centers Program.

For any questions, please contact at: Email: <u>tushar.athawale@gmail.com</u>

