
Introduction to CUDA

Tushar Athawale

CAP 5705

Fall 2012

Resources

• CUDA Programming Guide

• Programming Massively Parallel
Processors: A Hands-on Approach

 - David Kirk

Motivation

• Process independent tasks in parallel for a
given application.

• How can we modify 'line drawing routine'?

 a)Divide line into parts and assign each part
to each processor.

 b)What if we assign a processor per scanline?

 (Each processor knows its own y coordinate)
 Ray tracing?

Memory Model

• Host (CPU) and device (GPU) have
separate memory spaces

• Host manages memory on device
– Use functions to allocate/set/copy/free memory

on device
– Similar to C functions

Memory Model

• Types of device memory
– Registers – read/write per-thread
– Local Memory – read/write per-thread
– Shared Memory – read/write per-block
– Global Memory – read/write across grids

– Constant Memory – read across grids
– Texture Memory – read across grids

Memory Model

© NVIDIA Corporation

Memory Model

Global
Memory

Constant
Memory

Texture
Memory

Block (0,0)

Shared Memory

Registers Registers

Local
Memory

Local
Memory

Thread (0,0) Thread (1,0)

Block (1,0)

Shared Memory

Registers Registers

Local
Memory

Local
Memory

Thread (0,0) Thread (1,0)

Host

© NVIDIA Corporation

Programming Model

• SIMT (Single Instruction Multiple Threads)

• Threads run in groups of 32 called warps

• Every thread in a warp executes the same
instruction at a time

Programming Model

• A single kernel executed by several threads

• Threads are grouped into ‘blocks’

• Kernel launches a ‘grid’ of thread blocks

Programming Model

© NVIDIA Corporation

Programming Model

• All threads within a block can
– Share data through ‘Shared Memory’
– Synchronize using ‘_syncthreads()’

• Threads and Blocks have unique IDs
– Available through special variables

Programming Model

© NVIDIA Corporation

Squaring Array Elements

Consider Array of 8 elements

Array sitting in the host(CPU) memory

Void host_square(float* h_A)

{

For(I =0; I < 8; I ++)

 h_A[I] = h_A[I] * h_A[I]

}

Squaring Array Elements

• Array sitting in the Device(GPU) memory

(Also called as Global Memory)

1)Spawn the threads

2)Each thread automatically gets a number

3)Programmer controls how much work each
thread will do. e.g(in our current example)

 4 threads - each thread squares 2 elements

 8 threads – each thread squares 1 element.

Squaring Array Elements

• Consider 8 threads are spawned by
programmer, where each thread squares 1
element. Consider threads are generated
within 1 block.

• Each thread automatically gets a number

 (0,0,0) (1,0,0) (2,0,0) … (7,0,0) in
registers corresponding to each thread.

 These built in registers are called
ThreadIdx.x ,ThreadIdx.y, Threadx.z

Squaring Array Elements

• Write a program for only 1 thread

• Following program will be executed for
each thread in parallel

global void device_square(float* d_A)

{

 myid = ThreadIdx.x;

 d_A[myid] = d_A[myid] * d_A[myid];

}

Squaring Array Elements

• Block Level Parallelism?

 Suppose programmer decides to visualize
array of 8 elements as 2 blocks

 BlockId’s are stored in built in BlockIdx.x,
BlockIdx.y, BlockIdx.z

BlockID (0,0,0) (1,0,0)

ThreadID (0,0,0) .. (3,0,0) (0,0,0)..(3,0,0)

Squaring Array Elements

Here each thread knows its own blockID

and ThreadId

Int BLOCK_SIZE = 4;

global void device_square(float* d_A)

{

 myid = BlockIdx.x*BLOCK_SIZE
 +ThreadIdx.x;

 d_A[myid] = d_A[myid] * d_A[myid];

}

General flow of .cu file

• Allocate Array in host memory (malloc) e.g h_A
• Initialize that Array
• Allocate Array in device memory(cudaMalloc) e.g d_A
• Transfer data from host to device memory(cudaMemCpy)

• Specify kernel execution Configuaration (This is very
important. Depending upon it blocks and threads
automatically get assigned numbers)

• Call Kernel
• Transfer result from device to host

memory(cudaMemCpy)
• Deallocate host(free) and device(cudaFree) memories

CPU v/s GPU

© NVIDIA Corporation 2009

Compiling

• Use nvcc to compile .cu files

nvcc –o runme kernel.cu

• Use –c option to generate .obj files
nvcc –c kernel.cu
g++ –c main.cpp
g++ –o runme *.o

Transparent Scalability

• Hardware is free to schedule thread blocks
on any processor

© NVIDIA Corporation 2009

Thank you

• http://developer.download.nvidia.com/presentations/2009/SIGGRAPH/Alternative_Rendering_Pipelines.mp4

http://developer.download.nvidia.com/presentations/2009/SIGGRAPH/Alternative_Rendering_Pipelines.mp4

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

